

Lecture Notes in Computer Science 3811
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Christoph Bussler Ming-Chien Shan (Eds.)

Technologies
for E-Services

6th International Workshop, TES 2005
Trondheim, Norway, September 2-3, 2005
Revised Selected Papers

13

Volume Editors

Christoph Bussler
Cisco Systems, Inc.
3600 Cisco Way, MS SJC18/2/4, San Jose, CA 95134, USA
E-mail: chbussler@aol.com

Ming-Chien Shan
HP Labs
13264 Glasgow Court, Saratoga, CA 95070, USA
E-mail: MingChien.Shan@mail.com

Library of Congress Control Number: 2006920029

CR Subject Classification (1998): H.2, H.4, C.2, H.3, J.1, K.4.4, I.2.11

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-31067-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-31067-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11607380 06/3142 5 4 3 2 1 0

Preface

The 6th Workshop on Technologies for E-Services (TES-05) was held September 2-3,
2005, in conjunction with the 31st International Conference on Very Large Data Bases
(VLDB 2005) in Trondheim, Norway.

The next generation of applications will be developed in the form of services that
are offered over a network, either a company's intranet or the Internet. Service-based
architectures depend on an infrastructure that allows service providers to describe and
advertise their services and service consumers to discover and select the services that
best fulfill their requirements. Frameworks and messaging protocols for e-services in
stationary and mobile environments are being developed and standardized, metadata
and ontologies are being defined, and mechanisms are under development for service
composition, delivery, monitoring, and payment. End-to-end security and quality of
service guarantees will be essential for the acceptance of e-services. As e-services
become pervasive, e-service management will play a central role.

The workshop's objective is to provide a forum for researchers and practitioners to
present new developments and experience reports. The goal of the TES workshop is to
identify the technical issues, models, and infrastructures that enable enterprises to
provide e-services to other businesses and individual customers.

In response to the call for submissions, 40 papers were submitted, out of which the
Program Committee selected 10 high-quality submissions for presentation at the work-
shop. Unfortunately, one author had to withdraw, and the remaining nine papers that
were presented are included in these proceedings.

The workshop itself started with a keynote given by Umeshwar Dayal on “Optimi-
zation of Business Processes (& Composite E-Services).” He gave interesting insights
into past, current, and future developments in the area of business process manage-
ment and the application of these results to composite e-services. Afterwards the three
technical sessions “Design,” “Technology,” and “Composite Web Services” took
place and very interesting and stimulating research paper presentations were delivered,
resulting in many questions and discussions.

We would like to thank the authors for their submissions to the workshop, the Pro-
gram Committee for their hard work during a very brief reviewing period, the keynote
speaker and presenters for their very interesting presentations, and the audience for
their interest, questions, and discussions.

September 2004 Christoph Bussler
Ming-Chien Shan

Workshop Organization Committee

Christoph Bussler
Digital Enterprise Research Institute (DERI), Ireland

Ming-Chien Shan
Hewlett-Packard Laboratories, CA, USA

Program Committee

Boualem Benatallah
Fabio Casati
Emilia Cimpian
Jen-Yao Chung
Francisco Curbera
Marlon Dumas
Schahram Dustdar
Timothy Finin
Dimitrios Georgakopoulos
Paul Grefen
Juan Gomez
Armin Haller
Manfred Hauswirth
Kashif Iqbal
Mick Kerrigan
Jacek Kopecky
Frank Leymann
Adrian Mocan
Heiko Ludwig

Eyal Oren
Cesare Pautasso
Mike Papazoglou
Barbara Pernici
Krithi Ramamritham
Manfred Reichert
Dumitru Roman
Brahmananda Sapkota
Karsten Schulz
Amit Sheth
Thomas Strang
Katia Sycara
Farouk Toumani
Kunal Verma
Michal Zaremba
Liang-Jie Zhang
Michal Zaremba
Lizhu Zhou

Table of Contents

Keynote Presentation

Challenges in Business Process Analysis and Optimization
Malu Castellanos, Fabio Casati, Mehmet Sayal, Umeshwar Dayal 1

Design

Bootstrapping Domain Ontology for Semantic Web Services from
Source Web Sites

Wensheng Wu, AnHai Doan, Clement Yu, Weiyi Meng 11

Systematic Design of Web Service Transactions
Benjamin A. Schmit, Schahram Dustdar . 23

A Matching Algorithm for Electronic Data Interchange
Rami Rifaieh, Uddam Chukmol, Nabila Benharkat 34

Technology

A Lightweight Model-Driven Orchestration Engine for e-Services
Johann Oberleitner, Florian Rosenberg, Schahram Dustdar 48

Ad-UDDI: An Active and Distributed Service Registry
Zongxia Du, Jinpeng Huai, Yunhao Liu . 58

WS-Policy for Service Monitoring
Luciano Baresi, Sam Guinea, Pierluigi Plebani . 72

Composite Web Services

SENECA – Simulation of Algorithms for the Selection of Web Services
for Compositions

Michael C. Jaeger, Gregor Rojec-Goldmann . 84

Monitoring for Hierarchical Web Services Compositions
Debmalya Biswas, Krishnamurthy Vidyasankar . 98

VIII Table of Contents

Efficient Scheduling Strategies for Web Services-Based E-Business
Transactions

Erdogan Dogdu, Venkata Mamidenna . 113

Author Index . 127

C. Bussler and M.-C. Shan (Eds.): TES 2005, LNCS 3811, pp. 1 – 10, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Challenges in Business Process Analysis
and Optimization

Malu Castellanos, Fabio Casati, Mehmet Sayal, and Umeshwar Dayal

Hewlett-Packard Laboratories, Palo Alto, CA
firstname.lastname@hp.com

Abstract. As organizations become more and more process-centered and as
the extended enterprise becomes more of a reality, there is an increasing need
to move towards the intelligent enterprise characterized by its agility for pro-
visioning resources and services and the adaptation and optimization of its
business processes. Many are the challenges that need to be faced to equip the
extended enterprise with intelligence, in particular with business process
intelligence. In this paper we present an overview of some challenges, oppor-
tunities and directions for analysis and optimization of business processes
towards the intelligent enterprise.

1 Business Process Intelligence

Over the years the concept of enterprise has evolved dramatically as its functionalities
and boundaries have extended in response to business and technological changes. The
traditional monolithic enterprise was characterized by all of its operations being per-
formed in-house, and as a consequence, the key challenges addressed by the enterprise
in the 1980’s were functional automation and enterprise integration. Competitive pres-
sures in the 1990’s and early 2000’s have compelled enterprises to outsource many of
their non-core operations such as financial processing or even manufacturing. Advances
in network technology, information exchange standards and middleware have made it
possible to reach beyond the boundaries of the traditional enterprise to integrate trading
partners, suppliers, and service providers giving rise to the extended enterprise. B2B
frameworks and protocols (such as Oasis/ebXML and RosettaNet) have emerged for
partner integration and the management of collaborative business processes across the
extended enterprise. The high complexity of the extended enterprise has made it crucial
to devise ways of operating and managing its components and interactions in an auto-
matic, efficient and flexible way. In particular, integration of information and process
flows, agile provisioning of resources and services, monitoring, analysis, adaptation and
optimization of business processes are characteristic of a new concept of enterprise, the
intelligent enterprise.

There are many challenges to make the enterprise transformation a reality. Architec-
ture and infrastructure for its ecosystem; modeling of collaborative, inter-organizational
business processes that span the partners in the extended enterprise; description, com-
position, publishing, registration and discovery of business service providers; rapid and
dynamic connection and disconnection of partners; security and trust; and negotiation to

2 M. Castellanos et al.

name a few. In this paper, we focus on aspects related to the management and optimiza-
tion of business processes in the intelligent enterprise.

Our key thesis in this paper is that an (extended) enterprise is an entity that delivers
services to customers, and it is the business processes underlying such services which
drive the enterprise (Figure 1). Traditional business process management supports the
definition, execution and monitoring of business processes, defines and controls the
sequence, timing and other dependencies among tasks, enforces business rules and
policies, assigns resources (humans, data, applications, web services) to individual
tasks, monitors and tracks all aspects of the process execution. Inter-enterprise business
process management extends the above functionalities to the extended enterprise as a
result of the marriage between process management and web services technologies. In
the intelligent enterprise business process management is equipped with functional-
ities that facilitate the optimization of the quality (in terms of metrics meaningful to
the enterprise –internal quality-, or to the customers –external quality-) of intra- and
inter-enterprise business processes. This is known as Business Process Intelligence.

Fig. 1. Business processes drive the Enterprise

In business process intelligence, quality metrics can be computed from process exe-
cution data logged in various forms (workflow engine logs, web service execution logs,
application logs, event logs, etc). For example, the performance metric of an order
process could be derived from the start and end times of execution of orders processed
during a given period of time. By warehousing [Bonifati01] the execution data and the
metrics the business process can be monitored, analyzed and optimized with different
kinds of techniques relying on data mining, statistics, simulation, and optimization,
among others [Castellanos05C]. The purpose of this paper is to discuss opportunities
for analysis and optimization of business processes along with some directions and
challenges. In particular, we discuss six challenging areas: process validation, resource

 Challenges in Business Process Analysis and Optimization 3

allocation, service selection, work queue management, time-based correlation, and
prediction and proactive optimization.

2 Process Validation

Business processes underlying enterprise business operations often start with a model
(composed by individual tasks along with their order and dependencies) that is mapped
to the IT infrastructure to be implemented accordingly. Unfortunately, it is often the
case that the initial alignment of the process model and its implementation doesn’t last
too long, sooner or later the implementation starts to deviate from the model in response
to changes in the infrastructure or in the business objectives of the enterprise. New steps
and even paths can be added to handle new situations and exceptions, conditions in the
decisions may be modified to adapt to new requirements for following one path or an-
other, steps could be merged in response to some changes in the organization, and so on.
At some point nobody knows what is the ‘real’ process and what deviations have taken
place. Moreover, the deviations can occur only for some process executions without
anybody knowing in which cases or contexts this occurs.

The misalignment between the real process and its original model needs to be re-
solved in a number of situations. To optimize a process or simply improve its operation,
it is necessary to have a clear picture of the model as it is executed in practice. When the
process has been subject to changes over time, it is even more important to analyze how
such changes or deviations are affecting its performance and what are the opportunities
to improve it. In addition, new legislations such as Sarbanes-Oxley, require to document
processes and add controls where appropriate. For this, it is necessary to find the devia-
tions that have happened and obtain a process model that corresponds to the reality.
Monitoring is yet another activity that requires checking the consistency between the
analyst’s high level view and the actual process. Finally, by identifying process model
deviations it is possible to perform sensitivity analysis to analyze alternatives to such
deviations.

Triggered by situations like the aforementioned, research has started in this direction
under the name of process validation, process alignment, delta analysis and conformance
testing. It basically consists of assessing whether a process model actually corresponds to
what is executed by a company’s IT infrastructure and in identifying the deviations if that
is not the case. This is related to the area of process discovery which elicits the process
model from the logged execution data when such a model does not exist. In contrast, in
process validation the model already exists and it is the deviations from it what is of inter-
est. In both cases it is the event, transaction or audit log what is mined to discover how the
process is being conducted in reality. This kind of log typically records events that corre-
spond to the start and completion of activities in the IT infrastructure. In addition, the log
entry provides information about the task identifier and about the process execution identi-
fier in the context of which the task is being performed. As an example, an entry in the log
could say that an ‘inventory check’ step started at 3.30pm and completed at 4.15 pm, and
that it has been executed in the context of order processing #539 (where ‘order processing’
is the process type whose model we want to verify, while #539 identifies a specific
execution - also called case or instance - of the process). Different products like WFMS,

4 M. Castellanos et al.

ERPs, transaction monitor systems like HP OVTA, HP BPI, to name a few, provide this
kind of log.

A few techniques have been proposed to validate processes and most of them consist
of applying process discovery to learn the ‘real’ model [Aalst03] and then compare it
with the original one to identify deviations and measure the degree of (mis)alignment
[Rozinat05]. The challenge remains in developing alternative techniques that do not re-
quire discovering the real model so that the cost of verification is lower while at the
same time gaining more efficiency. Furthermore, to make things more versatile and
automatic, research needs to be done for techniques that could keep track of deviations
from a process model as they occur, associate them to their context, and suggest
changes to the model as more evidence of these deviations is collected.

3 Resource Allocation

A business process is formally defined as a sequence of tasks which are carried out by
resources. The resources that are in charge of executing the individual process tasks
can be humans, software applications, or web services. The allocation of resources to
tasks can be done in either static or dynamic manner. Static resource allocation means
that a pre-defined set of assignments between resources and tasks is applied and stays
fixed for all instances (executions) of the business process. A dynamic allocation al-
lows the process designers to define resource pools, which contain resources that are
capable of carrying out a particular task or a set of tasks, and the actual assignment is
done during the execution of each individual process instance. The concept of Virtual
Resources is generally used for defining such resource pools.

The allocation of resources to tasks can significantly affect the performance and
outcome of the business processes, which in turn affects the quality of services and
products of an enterprise. It is possible to allocate one or more resources from a vir-
tual resource pool to a particular task. Identification of bottlenecks in a business proc-
ess and proper allocation of resources to critical tasks can help a business meet the
deadlines and Service Level Agreement (SLA) terms while delivering services and
products at a desired quality.

Business process simulation tools are used for analyzing the behavior of resources
and their affect on the overall performance and outcome of processes. Businesses of-
ten need to know what would be the effect on business goals (in terms of metrics) if
certain process parameters would be set to different values. For example, it is impor-
tant to know (or predict) the effect of assigning two resources to a particular task, in-
stead of one. Sensitivity analysis (what-if analysis) allows users to analyze outcomes
of various scenarios in which the effect of different parameter settings can be ob-
served. It is important to know how much benefit such an additional resource alloca-
tion could bring. Possible parameters for simulation and sensitivity analysis could be
resource pool sizes for individual tasks, inter-arrival rate of entities to be processed,
resource behavior (response time to particular tasks), and cost of individual resources
(per unit time or total). It is usually assumed that data needed for setting up simulation
parameters is available from audit logs of Workflow Management Systems (WFMS).
Most business process definitions in WFMS tools include explicit information about
resource-task allocation. However, business processes are not always automated using

 Challenges in Business Process Analysis and Optimization 5

WFMS, and such allocation information is not usually available. Therefore, it is often
necessary to extract resource allocation manually or automatically using various data
analysis and mining techniques.

Businesses are interested not only in understanding the effect of changes in a process
but also in determining the best possible allocation of resources in order to achieve cer-
tain performance and quality goals. Simulation leveraged with a search technique offers
one solution [Castellanos05C]. Here, the objective could be to minimize the number of
process instances that exceed a certain metric threshold or to maximize the overall value
of a given metric. Other metrics that need to be kept within range would be the con-
straints and the maximum number of units in each resource pool would constitute the
bounds of the search space. The challenge is how to take advantage of domain knowl-
edge to quickly reduce the search space to minimize the number of resource allocation
configurations that need to be simulated. Other techniques, such as mathematical pro-
gramming, can be brought to bear on this problem.

It is also important to automatically identify the resources that perform poorly in
certain contexts. Data mining, and in particular classification algorithms, can be used
for this purpose [Casati04]. For example, a classification rule may indicate that in-
volvement of a particular resource in task executions results in poor performance. Re-
placement of such a resource with another one from a resource pool may yield much
better execution performance. Similarly, time-correlation detection [Sayal05] can tell
us the time-dependent cause-effect relationships among any numeric variables (e.g.,
business metrics or operational data). As an example, a decrease in the performance
of a particular resource may trigger the appearance of a bottleneck in a given critical
step of a process after a certain time period. Automatic detection of such time-
correlations can help business managers optimize resource allocation to proactively
avoid such effects.

4 Service Selection

A related issue that can potentially affect the quality or performance of a business proc-
ess is that of dynamic service selection, that is, of selecting at run-time the service that
can best perform (implement) a certain step in the process. The lack of maturity and of
standardization at the business level (that is, lack of standard business interfaces, proto-
cols, and in general of high-level B2B standards) has made this problem to date irrele-
vant for the industry, where processes had to be implemented with a static binding to the
services implementing the steps. However, lately we are witnessing an increased push
not only to standardize low-level interaction protocols, but also protocols (and seman-
tics) at the business level (e.g., what is the meaning of a PurchaseOrder document and
how it should be exchanged among parties to arrive at a complete purchase transaction).
This raises the possibility, and hence the opportunity, for dynamic service binding, at
least between closed communities of trusted partners. Ideally, the goal is to select, at
each step, the service that maximizes the probability of achieving certain quality of per-
formance goals.

Many approaches to this problem exist, but they are mostly based on having provid-
ers define non-functional parameters that specify the cost, duration, and other service
quality metrics. Then, for each step in the process execution, a choice is made about the

6 M. Castellanos et al.

provider to be used by matching desired and provided quality, or by computing some
utility function over the service quality metrics, with the goal of achieving the best pos-
sible process execution “quality”. This kind of approaches has several limitations. For
example, it requires clients (the ones executing the process) to trust the accuracy of the
metric values declared by the providers, it assumes the ability to identify the important
service metrics that contribute to high process execution quality, it requires a standard
way to model metrics so that customer and providers can understand each other, and it
assumes that customers have a clear idea of how exactly process quality goals depend
on (are a function of) the value of the providers' promised quality parameters. In gen-
eral, these are not realistic assumptions. Hence, the challenge here is how to perform
dynamic service selection without incurring in the limiting assumptions described above
(which also require significant modeling efforts).

A possible solution consists in having customers define the quality goals of their
business processes and then specify which past executions they consider to be of high
quality. This can be done by either specifying a function over process execution data
that labels process executions with quality measures (e.g., all invoice payment proc-
esses that completed before the payment due date are “good”), or by having custom-
ers explicitly label process executions, for example based on feedback collected
online. Once the quality of past process executions are known or measurable, quality-
labeled process execution data are mined to build a set of models that, at each stage
during process execution and based on the specific characteristics of each process
execution, identify the service provider that historically, in ‘‘analogous’’ situations,
has contributed to high quality processes. This approach is feasible since it focuses on
what users really care about, what is the overall quality of the process; it involves lit-
tle modeling effort (defining process quality goals is the only effort needed by the
customer); and it is not based on provider-defined non-functional parameters for each
service, but rather based on facts, and can progressively adjust based on changing no-
tions of process quality as well as on changing behavior of service providers. We refer
the interested reader to [Casati04] for details.

5 Work Queue Management

Many business processes are characterized by manual steps, that is, steps executed by
human users (called processors) rather than services. In some cases the step creates a
work item which is assigned to a specific processor, while in others the item is placed
in a shared work queue.

In both cases, processors have, at any given time, several work items on which
they can work, often belonging to different process instances, and they typically have
flexibility in selecting which one to process first. The problem here is how to find out
which is the “optimal” order in which work items should be executed, where by opti-
mal we mean the order that minimizes SLA violations, or the total penalties resulting
from the SLA violations, or that optimize some user-defined performance function
(that can for example take into account SLA violations, penalties, importance of the
customers, etc..). Ideally, we are looking for techniques that prioritize the items in the
work queues to optimize this user-defined function. For simplicity, we just assume
that the goal is that of minimizing deadline expirations for the processes.

 Challenges in Business Process Analysis and Optimization 7

Leaving the decision of which work item to pick completely to the processor may
lead to adverse consequences and to violations of SLAs. For example, the processors
may start working on an item belonging to a process instance that is, performance-
wise, on target, and neglect more urgent work.

Identifying such an optimal solution is however not trivial, and indeed simple ap-
proaches do not solve the problem. For example, simply selecting the “oldest” work
item would be an incorrect approach, as SLA violations depend on the process duration
not on the duration of each step. Even if the work item has been started long ago, we
may be well in time to meet our deadlines. Selecting the work item corresponding to the
instance closer to reaching its deadline also does not produce the desired result: if we are
very close to the deadline already, we won’t be able to finish in time anyway, and we
may as well give higher priorities to work items of other process instances. In general,
we have therefore to be aware of the expected durations of the forthcoming steps to as-
sess what priority to give to a work item, and assess which priority order minimizes vio-
lations. Depending on the level of sophistication, we may use a simple average to derive
the expected time, or we may use complex forecasting techniques that based on the
characteristics of the specific process instance at hand, try to predict the duration of
forthcoming steps (e.g., approval for large orders typically take longer than those for
small orders).

Finally, we observe that this problem is more complicated than traditional proces-
sor scheduling or job shop scheduling problems, because the process structure also
comes into play. Assume that our process has two parallel branches that synchronize
at some point in the flow. There is no point in having one of the two advance fast if
the other is progressing slowly. Hence, to order work items, we need to be aware of
what is happening in the different branches of a process instance and make sure that
all branches progress (or all branches do not progress, and we leave higher priority to
other instances).

6 Time-Based Correlation

Another key problem in business process intelligence is that of relating metrics on the
process to operational data such as the performance of IT resources that participate in
the implementation of the process. This is important because it enables understanding
of the business impact of operational problems.

Time-correlation algorithms can be used for automatic detection of time-dependent
relationships among business metrics and operational data (e.g., the execution time of
tasks in a process or performance of individual resources). In [Sayal05] the input to
the algorithm is a set of numeric data streams, each of which contains the recorded
numeric values of one variable (business metric or operational data variable) over the
course of time. The output of the algorithm is a set of time-correlation rules that ex-
plain time-dependent relationships among data streams (numeric variables).

Detection of time-dependent relationships among hundreds or thousands of nu-
meric variables is a difficult task that needs to be achieved in order to understand the
cause-effect relationships among various events in a business. The method proposed
in [Sayal05] transforms numeric data streams into sequences of discrete events that
correspond to change points (or landmarks) in numeric values. This transformation

8 M. Castellanos et al.

reduces the search space of the algorithm by identifying the significant moments in
time that can be used for summarizing the behavior of numeric variables. Then, the
algorithm compares the change events from different data streams in order to detect
co-occurrences of those events and calculate the statistical significance of the co-
occurrences. The algorithm also calculates the typical time distance of the repeating
co-occurrence patterns across data streams in order to generate time-correlation rules.
Each time-correlation rule contains the following information:

• Numeric variables (data streams) that have time-dependent relationship
• Type of time-correlation (same or opposite direction)
• Sensitivity of time-correlation (how much the changes in one set of variables

affect the values of another set of variables)
• Confidence (statistical confidence of the generated rule)

A typical time-correlation rule looks like the following:
A increases more than 5% B decreases more than 10% within 2 days
(conf: 85%)

The rule indicates a time-correlation between two variables, A and B, in the oppo-
site direction such that the sensitivity of changes in B to the changes in A is high (ap-
proximately twice the amount of change in A), and the time duration to observe the
impact of a change in A is two days. This information can be used for forecasting the
behavior of business process instances, identifying the bottlenecks, and raising alerts
in case certain thresholds are going to be exceeded based on the forecast values. As an
example, the variables A and B might correspond to the performance of a particular
resource and total execution time of a business process respectively. In that case, a
business manager can be warned about deadlines that will be missed as a result of per-
formance degradation in a particular resource.

7 Prediction and Proactive Optimization

Having visibility into the current state of business processes doesn’t seem to suffice
anymore. The ability to predict metrics and performance indicators gives the opportu-
nity to proactively optimize the business process to improve its behavior (wrt its met-
rics). Predictions can be done at the instance level or at the aggregate level. The same
applies to optimization. For example, we may want a prediction of the duration metric
for a specific order of a customer to see if we will deliver the goods on time, and if
not then we may want to increase the priority of the order so that it uses express
shipment. We call this instance-based prediction (the prediction is done for a given
instance while it is being executed) and dynamic optimization (the optimization is
only for that instance and it is done during its execution), respectively. Instead, we
may want to know if the average duration of orders on a certain day of next week will
exceed the promised 24 hours delivery time (SLA violation) to plan for extra re-
sources if needed. We call this type of prediction class-based time series prediction
and static optimization is applied in this case.

While the first kind of prediction (i.e., instance-based) as its name suggests is
based on the instance properties (e.g., day of the week that the order was submitted,
type of product, region, etc), the second one is based on the time series of previous

 Challenges in Business Process Analysis and Optimization 9

values of the metric. In consequence, suitable techniques for instance-based predic-
tion belong to data mining, while a relaxed form of time series forecasting is used for
the second one, [Castellanos05A].

In instance-based prediction [Grigori04] a model is generated from patterns mined
from execution and business data associated to process instances. For example, a pat-
tern may indicate that if an order was received on a Friday afternoon and step check
inventory is performed by server S3, there is an 85% chance that the order won’t get
shipped in less than 24 hours. One of the main challenges for instance-based predic-
tion is related to the fact that as a process instance makes progress in its execution its
predictions need to be updated with the additional execution data that becomes avail-
able. The more the data, the more confidence there is in the prediction but at the same
time the less time there is in taking action to prevent that a prediction (of an undesir-
able value) occurs. This means that different prediction models need to be built for
different execution stages of a process. Since some processes have hundreds of steps,
it doesn’t make sense to have a prediction model after each step. Not only it is very
costly to generate so many models, but it is useless to apply a model to each instance
after the execution of each step since predictions will only change after some steps.
The challenge is to find the execution stages that are relevant for prediction (i.e., pre-
diction stages).

Class-based time series prediction [Castellanos05A] is a relaxed form of time series
forecasting which takes advantage of the fact that extreme accuracy is not required
when the goal is to predict whether a given metric will exceed a certain threshold or not,
is within some specified range or not, or belongs to which one of a small number of
specified classes. This gives the opportunity to completely automate the forecasting
process to enable the analysis of hundreds or even thousands or business process metric
time series. The main idea is to characterize a time series according to its components
(i.e., trend and seasonality) and then apply the most appropriate technique(s) to create a
good forecasting model [Castellanos05B]. Once the model is created it can be applied to
obtain a numeric prediction which is mapped to the corresponding class (e.g., exceeds-
threshold or not, within-range or not, low/medium/high). The main challenge, common
to the instance-based models too, is how to quickly detect when the model is not good
anymore and how to update it without having to rebuild it from scratch.

Once a prediction is obtained, different actions can be taken to optimize the process
to improve the predicted value. When the prediction is made for a specific instance, it is
possible to dynamically change things that only affect that instance to improve its exe-
cution. Typical actions are to assign a specific resource for a given action, change the
priority of the instance, or dynamically change a selected path. In contrast, when the
prediction is made for an aggregated metric, the optimization is static in the sense that it
changes aspects of the process that are common to all its instances, like the number of
resources of a given type that are allocated to a process.

Prediction opens up the opportunity to proactively optimize aspects of a process
upon the alert of undesired predicted values. However, research is needed to maxi-
mize the potential for optimization. In particular, techniques for other kinds of opti-
mization, including structural optimization where the order of the activities is changed
and concurrency of activities is maximized. Also, techniques to identify what as-
pect(s) of a process execution are the most suitable to modify on the fly.

10 M. Castellanos et al.

8 Conclusions

The transformation of the enterprise in response to business and technological
changes has led to the concept of intelligent enterprise where business process intelli-
gence is crucial to manage (monitoring, analyzing, and optimizing) the complexity of
its inter- and intra-business processes. In this paper we have identified and briefly dis-
cussed challenges in business process intelligence. A prototype (Business Cockpit)
that includes many of the capabilities described in this paper has been developed at
HP Labs.

References

[Aalst03] Wil van der Aalst, B.F. van Dongen, J. Herbst, L.Maruster, G.Schimm,
A.J.M.M.Weijters. Workflow Mining: A Survey of Issues and Approachea.
Data and Knowledge Engineering, 47(2), 2003.

[Bonifati01] Angela Bonifati, Fabio Casati, Umesh Dayal, and Ming-Chien Shan.
Warehousing Workflow Data: Challenges and Opportunities. Proceedings
of VLDB01, Rome, Italy. September 2001.

[Casati02] Fabio Casati, Malu Castellanos, Umesh Dayal, Ming Hao, Ming-Chien
Shan, Mehmet Sayal. Business Operation Intelligence Research at HP
Labs. Data Engineering Bulletin 25(4), December 2002.

[Casati04] Fabio Casati, Malu Castellanos, Umesh Dayal, Ming-Chien Shan. Prob-
abilistic, Context-Sensitive, and Goal-Oriented Service Selection.
Procs.oOf ICSOC’05. New York, Nov 2004.

[Castellanos05A] Malu Castellanos, Norman Salazar, Fabio Casati, Umesh Dayal, Ming-
Chien Shan. Predictive Business Operations Management. Procs. of
DNIS’05, Springer Verlag, May 2005.

[Castellanos05B] Malu Castellanos, Norman Salazar, Fabio Casati, Ming-Chien Shan,
Umesh Dayal. Automatic Metric Forecasting for Management Software.
Procs. OVUA Workshop, Porto, Portugal, July 2005.

[Castellanos05C] Malu Castellanos, Fabio Casati, Umesh Dayal, Ming-Chien Shan. iBOM:
A Platform for Business Operation Management. Procs of ICDE 2005. To-
kyo, Japan. Jun 2005.

[Grigori04] Daniela Grigori, Fabio Casati, Malu Castellanos, Umesh Dayal, Ming-
Chien Shan, Mehmet Sayal. Business Process Intelligence. Computers in
Industry 53 (3). April 2004.

[Rozinat05] Ana Rozinat, Wil Van der Aalst. Conformance Testing: Measureing the Fit
and Appropriateness of Event Logs and Process Models. Procs. of BPI’05,
Nancy, France, September 2005.

[Sayal05] Mehmet Sayal, Ming-Chien Shan. Analysis of Numeric Data Streams at
Different Granularities. IEEE International Conference on Granular Com-
puting. Beijing, China, July 2005.

Bootstrapping Domain Ontology for
Semantic Web Services from Source Web Sites

Wensheng Wu1, AnHai Doan1, Clement Yu2, and Weiyi Meng3

1 University of Illinois, Urbana, USA
2 University of Illinois, Chicago, USA

3 Binghamton University, Binghamton, USA

Abstract. The vision of Semantic Web services promises a network of
interoperable Web services over different sources. A major challenge to
the realization of this vision is the lack of automated means of acquiring
domain ontologies necessary for marking up the Web services. In this
paper, we propose the DeepMiner system which learns domain ontologies
from the source Web sites. Given a set of sources in a domain of inter-
est, DeepMiner first learns a base ontology from their query interfaces.
It then grows the current ontology by probing the sources and discov-
ering additional concepts and instances from the data pages retrieved
from the sources. We have evaluated DeepMiner in several real-world do-
mains. Preliminary results indicate that DeepMiner discovers concepts
and instances with high accuracy.

1 Introduction

Past few years have seen an increasingly widespread deployment of Web services
in the e-commerce marketplace such as travel reservation, book selling, and car
sale services [21]. Among the most prominent contributing factors are several
XML-based standards, such as WSDL [26], SOAP [20], and UDDI [22], which
greatly facilitate the specification, invocation, and discovery of Web services.
Nevertheless, the interoperability of Web services remains a grand challenge.

A key issue in enabling automatic interoperation among Web services is to
semantically mark up the services with shared ontologies. These ontologies typi-
cally fall into two categories: service ontology and domain ontology. The service
ontology provides generic framework and language constructs for describing the
modeling aspects of Web services, including process management, complex ser-
vice composition, and security enforcement. Some well-known efforts are OWL-S
[5], WSFL [11], and WSMF [9]. The domain ontology describes concepts and con-
cept relationships in the application domain, and facilitate the semantic markups
on the domain-specific aspects of Web services such as service categories, seman-
tic types of parameters, etc. Clearly, such semantic markups are crucial to the
interoperation of the Web services.

Automatic acquisition of domain ontologies is a well-known challenging prob-
lem. To address this challenge, this paper proposes DeepMiner, a system for an
incremental learning of domain ontologies for semantically marking up the Web

C. Bussler and M.-C. Shan (Eds.): TES 2005, LNCS 3811, pp. 11–22, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

12 W. Wu et al.

(a) Its query interface (b) A snippet of a data page

Fig. 1. A car sale Web site: query interface and data page

services. DeepMiner is motivated by the following observations. First, we observe
that many sources, which may potentially provide Web services, typically have
already been providing similar services in their Web sites through query interface
(e.g. in HTML form) and Web browser support. To illustrate, consider buying a
car through a dealership’s Web site. The purchasing may be conducted by first
specifying some information on the desired vehicle such as make, model, and
pricing, on its query interface (Figure 1.a). Next, the source may respond with
the search result, i.e., a list of data pages (e.g., Figure 1.b), which typically con-
tain detailed information on the qualified vehicles. The user may then browse the
search result and place the order on the selected vehicle (e.g. through another
HTML form).

Second, we observe that query interfaces and data pages of the sources often
contain rich information on concepts, instances, and concept relationships in the
application domain. For example, there are six attributes in Figure 1.a, each is
denoted with a label and corresponds to a different concept. Some attributes
may also have instances, e.g., Distance has instances such as 25 Miles. Further,
the data page in Figure 1.b contains many additional concepts such as City,
State, Condition, etc., and instances such as Homewood for City and Fair for
Condition. Finally, the relative placement of attributes in the interface and data
pages indicates their relationships, e.g., closely related attributes, such as Make
and Model (both describe the vehicle), Zip Code and Distance (both concern the
location of the dealership), are typically placed near to each other.

Based on the above observations, the goal of DeepMiner is to effectively learn
a domain ontology from interfaces and data pages of a set of domain sources.
Achieving this goal requires DeepMiner to make several innovations.

– Incremental learning: As observed above, the knowledge acquired from
source interfaces only is often incomplete since data pages of the sources
may contain many additional information. Further, different sources may
contain a different set of concepts and instances. As such, DeepMiner learns
the domain ontology in a snowballing fashion: first, it learns a base ontology
from source interfaces; it then grows the current ontology by probing the
sources and learning additional concepts and instances from the data pages
retrieved from the sources.

– Handling heterogeneities among sources: Due to the autonomous na-
ture of sources, the same concept may be represented quite differently over

Bootstrapping Domain Ontology for Semantic Web Services 13

different sources. Another major challenge is thus to identify the semantic
correspondences between concepts learned from different sources. To address
this challenge, DeepMiner employs a clustering algorithm to effectively dis-
cover unique concepts over different interfaces. The learned ontology is then
exploited for discovering new concepts and instances from data pages.

– Knowledge-driven extraction: Extracting concepts and instances from
data pages is significantly more challenging than from query interfaces (since
concepts and instances on an interface are typically enclosed in a form con-
struct). To address this challenge, DeepMiner first exploits the current on-
tology to train concept classifiers. The concept classifiers are then employed
to effectively identify regions of a data page where concepts and instances
are located, discover presentation patterns, and perform the extraction.

The rest of the paper is organized as follows. Section 2 reviews related work.
Section 3 defines the problem. Sections 4–5 describe the DeepMiner system. Em-
pirical evaluation is reported in Section 6. Section 7 discusses the limitations of
the current system. Section 8 concludes the paper.

2 Related Work

The problem of semantically marking up Web services is fundamental to the
automated discovery and interoperation of Web services and e-services. As such,
it is being actively researched [3, 4, 7, 8, 12, 14, 19, 23, 24].

There have been some efforts in learning domain ontology for Web services.
Our work is most closely related to [17], but different in several aspects. First,
[17] learns domain ontology from the documentations which might accompany
the descriptions of Web services, while our work exploits the information from
the source Web sites. Second, we extract concepts and instances from semi-
structured data over source interfaces and data pages, while [17] learns ontology
from natural language texts.

[15] proposes METEOR S, a framework for annotating WSDL files with con-
cepts from an existing domain ontology. The mappings between elements in the
WSDL files and the concepts in the ontology are identified by exploiting a suite
of matchers such as token matcher, synonym finder, and n-gram matcher. [10]
employs several machine learning algorithms for the semantic annotation of at-
tributes in source interfaces. The annotation relies on a manually constructed
domain ontology. Our work is complementary to these works in that we aim to
automatically learn a domain ontology from the information on the source Web
sites. The learned ontology can then be utilized to annotate the Web services.

There are several previous work on extracting instances and their labels from
data pages [1, 25]. A fundamental difference between these work and ours is that
we utilize existing knowledge in the growing ontology to effectively identify data
regions and occurrences of instances and labels on the data pages. We believe
that such a semantics-driven approach is also more efficient than their template-
induction algorithm which can have an exponential complexity [6].

14 W. Wu et al.

The problem of matching interface attributes has also been studied in the
context of integrating deep Web sources (e.g., [27]). Our work extends these
works in the sense that the learned domain ontology can be used to construct a
global schema for the sources.

3 Problem Definition

We consider the problem of learning a domain ontology from a given set of
sources in a domain of interest. The learned domain ontology should have the
following components: (1) concepts: e.g. make, model, and class are concepts of
the auto sale domain. (2) instances of concept: e.g. Honda and Ford are instances
of the concept make. (3) synonyms: e.g. the concept make may also be denoted
by brand, car manufacturer, etc. (4) statistics: i.e., how frequent each concept
and its instances appear in the domain. (5) data types: of the concept instances,
e.g., instances of price are monetary values while instances of year are four-digit
numbers. (6) concept relationships: which include the grouping (e.g, make and
model), precedence (e.g., make should be presented before model), as well as the
taxonomic relationships between concepts.

In this paper, we describe DeepMiner with respect to learning components
(1)–(5). The details on the approaches for learning concept relationships will be
given in the full version of the paper.

4 The DeepMiner Architecture

The architecture of DeepMiner is shown in Figure 2. Given a set of sources,
DeepMiner starts by learning a base ontology O from source interfaces (step a).
Then, the ontology-growing cycle (steps b–f) is initiated. At each cycle, first
the current ontology O is exploited to train a label classifier Cl and an instance
classifier Ci (step b). Next, DeepMiner poses queries to a selected source through
its interface (step c) and obtains a set of data pages from the source (step d).
The learned classifiers Cl and Ci are then employed to identify data regions in
the data pages, from which DeepMiner extracts the occurrences of concepts and
their instances (step e). Finally, the obtained concepts and instances are merged
with O, resulting in a new ontology O′ for the next cycle (step f).

w4

xx
xx
xx

xx
xx
xx

xx
xx
xx

xx
xx
xx

 C1: (L1,I1)
 C2: (L2,I2)
 C3: (L3,I3)
 C4: (L4,I4)
 C5: (L5,I5)

 C7: (L7,I7)

 C6: (L6,I6)

 C2: (L2’,I2’)

xx
xx
xx

(f)

(a)
(b)

Ontology

c

w2w1

Label classifier

Instance classifier

(d) Result page

concepts & insts

(e)
Source

interfaces

Source interface

Extracted

(c)

.

w3

Fig. 2. The DeepMiner architecture

Bootstrapping Domain Ontology for Semantic Web Services 15

The rest of the section describes the process of learning base ontology. The
details on the ontology-growing cycle will be presented in Section 5.

Consider a set of source query interfaces in a domain of interest (e.g. Figure
1.a). A query interface may be represented by a schema which contains a set of
attributes. Each attribute may be associated with a label and a set of instances.
The label and instances of attributes can be obtained from the interface by
employing an automatic form extraction procedure [27].

Given a set of interfaces, DeepMiner learns a base ontology O which consists
of all unique concepts and their instances over the interfaces. Since similar at-
tributes (denoting the same concept) may be associated with different labels (e.g.
Make of the car may be denoted as Brand on a different interface) and different
sets of instances, a key challenge is thus to identify semantic correspondences
(i.e. mappings) of different attributes over the interfaces.

For this, DeepMiner employs a single-link clustering algorithm [27] to effec-
tively identify mappings of attributes over the interfaces. Specifically, the simi-
larity of two attributes is evaluated based on the similarity of their labels (with
the TF/IDF function commonly employed in Information Retrieval) and the
similarity of the data type and values of their instances. (For the attributes with
no instances, DeepMiner also attempts to glean their instances from the Web.)
The data type of instances is inferred from the values of instances via pattern
matching with a set of type-recognizing regular expressions. Finally, for each
produced cluster, DeepMiner adds into its base ontology a new concept which
contains the information obtained from the attributes in the cluster, including
labels, instances, data type, and statistics as described in Section 3.

5 Growing Ontology Via Mining Data Pages

Denote the current ontology as O which contains a set of concepts, each of
which is associated with a set of labels and instances. This section describes how
DeepMiner grows O by mining additional concepts and instances from the data
pages of a selected source. Query submission will be described in Section 6.

5.1 Training Label and Instance Classifiers

DeepMiner starts by training label classifier Cl and instance classifier Ci with
training examples automatically created from O. Cl predicts the likelihood that
a given string (of words) s may represent a concept in O, while Ci predicts the
likelihood that a given string s′ may be an instance of a concept in O.
Training Label Classifier: The label classifier Cl is a variant of the k-nearest
neighbor (kNN) classifier [13], which performs the prediction by comparing the
string with the concept labels it has seen during the training phase.

Specifically, at the training phase, for each concept c ∈ O and each of its
labels l, a training example (l, c) is created and stored with the classifier. Then,
given a string s, Cl makes predictions on the class of s based on the classes of
the stored examples whose similarity with s is larger than δ (i.e., the nearest

16 W. Wu et al.

neighbors of s), by taking votes. The similarity between two strings is their
TF/IDF score [18].

Example 1. Suppose that O contains three concepts c1, c2, and c3. Further sup-
pose that the training examples stored with Cl are (l1, c1), (l2, c2), (l3, c3), (l4,
c1), (l5, c2), and (l6, c3). Suppose that δ = .2.

Consider a string s and suppose that the labels in the first five training exam-
ples (i.e., l1 to l5) are the ones whose similarity with s is greater than .2. Since
2/5 of the nearest neighbors of s are from the concept c1, the confidence score
for c1 is .4. The predictions for other concepts are given similarly. ��
Training Instance Classifier: The instance classifier Ci is a naive Bayes classifier
which performs the prediction based on the frequency of words which occur in
the instances of the concepts. Note that Ci may also be implemented as a kNN
classifier, but since the number of instances of a concept is likely to be very large,
the naive Bayes classifier is typically more efficient since it does not require the
comparison with all the instances at the query time.

Specifically, for each instance i of a concept c in O, a training example (i′, c)
is created, where i′ is a bag-of-token representation of i with the stopwords in i
removed and the non-stop words stemmed. Then, given a string s, represented
by (w1, w2, · · · , wk), where wi are tokens. Ci assigns, for each concept c in O, a
prediction score p(c|s) computed as p(c)∗p(s|c)/p(s), where p(s) is

∑
c′inO p(c′)∗

p(s|c′). Particularly, p(c) is estimated as the percentage of training examples
of class c. p(s|c) is taken to be p(w1|c) ∗ p(w2|c) ∗ · · · ∗ p(wk|c), based on the
assumption that tokens of s occur independently of each other given c. p(wi|c) is
estimated as the ratio n(wi, c)/n(c), where n(wi, c) is the number of times token
wi appears in training examples whose class is the concept c, and n(c) is the
total number of token positions in all training examples of class c.

5.2 Mining Concepts and Instances

Identifying Data Regions: A data region is a portion of a data page which contains
data records generated by the source, where each record consists of a set of
instances and their labels. (Note that some instances may not have labels.) To
illustrate, the data region in Figure 1.b is represented by a dashed box. Note
that a data page may contain more than one data regions.

To identify the data regions, DeepMiner exploits the following observations.
First, the current ontology O can be exploited to recognize data regions which
may often contain labels and instances of existing concepts in O. Second, the
label of a concept and its instances are often located in close proximity and
spatially aligned on the data page [1]. This placement regularity can be exploited
to associate the label of a concept with its instances.

Motivated by the above observations, DeepMiner starts by seeking the occur-
rences of concepts of O and their instances in the data page. Specifically, consider
a data page p represented by its DOM tree. For example, Figure 3 shows the
DOM tree for the data page in Figure 1.b. First, the label classifier Cl is em-
ployed to predict, for each text segment t (i.e. text node in the DOM tree), the

Bootstrapping Domain Ontology for Semantic Web Services 17

Data region

Year:

b

Make:

Stratus

Model:

b1996 Dodgeb

font

td

trtr
td

font

b

tr

1996 Mechanic...

table

html

table

Fig. 3. The dom tree of Figure 1.b

concept c which t most likely denotes (i.e., c is the concept which Cl assigns the
highest score s with s > .5). Next, t is further verified to see if it indeed denotes
the concept c by checking if the text segment located below or next to t is an
instance of c. Intuitively, these two positions are the places where instances of c
are likely to be located.

To determine the relative position between two text segments, DeepMiner em-
ploys an approach which directly works on the DOM tree of the data page. The
approach exploits the following observations on the characteristics of data pages.
First, within each data region, the sequence of text segments resulted from a pre-
order traversal of the DOM sub-tree for the data region often corresponds to the
left-right, top-down ordering of text segments when the data page is rendered
via Web browsers. Second, since data pages are automatically generated, spatial
alignments of text segments are often achieved via the table construct of HTML,
rather than via explicit white space characters such as “ ” which are often
found in manually generated Web pages, e.g., with some Web page authoring
tool. Based on these observations, DeepMiner takes the text segment which fol-
lows t in the pre-order traversal of the DOM tree to be the segment next to t,
denoted as tn. Further, if t is located in the cell [i, j] of a table with M rows and
N columns, then all text segments at column j and row k, where i+1 ≤ k ≤ N ,
are taken to be the text segments below t, denoted as tbk

’s.
Next, the instance classifier Ci is employed to determine, for each text segment

tx among tn and tbk
’s, the concept in O which tx is most likely to be an instance

of. Suppose t′ has the largest confidence score among all these text segments
and it is predicted to be an instance of class c′. Then, the text segment t is
determined to denote the concept c only if c′ = c. For example, State in Figure 1.b
is recognized as a label for an existing concept c in O due to the fact that it
is highly similar to some known label of c and further that IL (which is a text
segment next to state) is predicted to be an instance of c by Ci.

The above procedure results in a set of label-instance pairs, each for some
known concept in O. Data regions are then determined based on these label-
instance pairs as follows. Consider such a label-instance pair, denoted as (L, I).
If L is located in a table, then the data region induced by (L, I) comprises all
content of the table. Otherwise, suppose the least-common-ancestor of nodes for
L and I in the DOM tree is ω. The data region induced by (L, I) is then taken
to be the subtree rooted at ω. The intuition is that related concepts are typically

18 W. Wu et al.

located near to each other in a data page and thus in the DOM tree of the data
page as well.

Example 2. The DOM subtree which corresponds to the identified data region
in Figure 1.b is marked with a dotted polygon in Figure 3. ��
Discovering Presentation Patterns: Once data regions are identified, DeepMiner
proceeds to extract concepts and their instances from the data regions. For this,
DeepMiner exploits a key observation that concepts and their instances within the
same data region are typically presented in a similar fashion, to give an intuitive
look-and-feel impression to users. For example, in Figure 1.b, the label of concept
is shown in bold font and ends with a colon, and the corresponding instance is
located right next to it, shown in normal font. Motivated by this observation,
DeepMiner first exploits known concepts and their instances to discover their
presentation patterns, and then applies the patterns to extract other concepts
and their instances from the same data region.

Specifically, a presentation pattern for a concept label L and its instance I in
a data region r is a 3-tuple: <α, β, γ>, where α is the tag path to L from the root
of the DOM subtree for r, β is the suffix of L (if any), and γ is the location of I
relative to L. These patterns are induced from the known occurrences of label-
instance pairs in the region r as follows. Denote the root of the DOM subtree
for r as ω. For each label-instance pair (Lx, Ix), we induce a pattern. First, α
is taken to be the sequence of HTML tags from ω to the text segment node for
Lx, ignoring all hyperlink tags (i.e., ‘a’). Second, if the text segment for Lx ends
with symbols such as ‘:’, ‘-’ and ‘/’, these symbols constitute β. Third, γ has two
possible values: next and below, depending on how Ix is located, relative to Lx.

Example 3. α for the data region in Figure 3 is (table, tr, td, font, b), β is the
suffix ‘:’, and the value of γ is next. ��
Extracting Concept Labels and Instances: This step employs the learned patterns
to extract concept labels and their instances from the data region r. In particular,
α and β of a pattern are first applied to identify labels of other concepts in the
region and then the instances of the identified concepts are extracted in the
location relative to the labels as indicated by the γ part of the pattern.

Example 4. The learned pattern from Figure 3 will extract concept-instances
pairs from Figure 1.b such as: (Year, {1996}), (Make, {Dodge}), and (Posted,
{January 04, 2005}). ��

5.3 Merging with the Current Ontology

This step merges the label-instances pairs mined from the data pages into the
current ontology O. Specifically, for each label-instances pair e = (L, I), if e
belongs to an existing concept c, then L and I are added to the list of labels and
instances for c, respectively. The corresponding statistics for c are also updated
accordingly. Otherwise, a new concept will be created with L as a label and I
as a set of instances.

Bootstrapping Domain Ontology for Semantic Web Services 19

6 Empirical Evaluation

We have conducted preliminary experiments to evaluate DeepMiner. The experi-
ments use an e-commerce data set which contains sources over automobile, book
and job domains, with 20 sources in each domain [2]. Each source has a query
interface represented by a set of attributes. The average number of attributes for
the interfaces in the auto, book and job domains is 5.1, 5.4, and 4.6, respectively.

First, we evaluated the performance of DeepMiner on discovering unique con-
cepts over source interfaces. The performance is measured by two metrics: pre-
cision, which is the percentage of correct mappings of attributes among all the
mappings identified by the system, and recall, which is the percentage of correct
mappings among all mappings given by domain experts. In these experiments,
the clustering threshold is set to .25, uniformly over all domains. Results are
shown in columns 2–3 in Table 1.

Table 1. The performance of DeepMiner

Domains
Base Ontology Data Regions Concept-Instances
Prec. Rec. Prec. Rec. Prec. Rec.

Auto 100 98.9 6/7 6/6 41/43 41/41
Book 100 90.4 8/8 8/8 41/41 41/43
Job 94.6 91.2 5/5 5/5 22/22 22/23

It can be observed that attribute mappings are identified with high precision
over all domains, with a prefect precision in the auto and book domains and
around 95% for the job domain. Furthermore, good recalls are also achieved,
ranging from 90.4% in the book domain to 98.9% in the auto domain. Detailed
analysis indicates the challenge of matching some attributes in the book do-
main, e.g., DeepMiner failed to match attributes section and category since their
instances have very little in common. A possible remedy is to utilize the instances
obtained from data pages to help identify their mapping.

To isolate the effects of different components, we manually examined the
mapping results and corrected mismatches. This process takes only a couple of
minutes, since there are very few errors in each domain.

Next, we evaluated the performance of DeepMiner on identifying data regions.
For this, we randomly select five sources for each domain. For each source, query
submission is made by automatically formulating a query string which consists
of form element names and values, and posing the query to the source. If an
attribute does not have instances in its interface, the instances of its similar at-
tributes (available from the base ontology) are used instead. This probing process
is repeated until at least one valid data page is returned from the source, judged
based on several heuristics as employed in [16]. For example, pages which contain
phrases such as “no results” and “no matches” are regarded as invalid pages.

For all data pages retrieved in each domain, we first manually identified the
number of data regions in the pages, and use it as the gold standard. Deep-
Miner’s performance is then measured by the number of data regions it correctly

20 W. Wu et al.

identified, over all data regions it identified (i.e. precision), and over all the ex-
pected data regions as given by the gold standard (i.e. recall). Results are shown
in columns 4–5 of Table 1. It can observed that DeepMiner is very accurate in
identifying data regions: only one is incorrectly identified in the auto domain.

Finally, we evaluated DeepMiner’s performance on discovering concepts and
their instances from data pages. This was done by first manually determining
the number of concept labels and their instances in all data pages, and then
comparing the concept-instances pairs discovered by DeepMiner with this gold
standard. Results are shown in the last two columns of Table 1.

We observe that DeepMiner achieves very high accuracy consistently over dif-
ferent domains. We looked at the data pages it made mistakes and examined the
reasons. In particular, we note that there is a concept with label job description:
in www.aftercollege.com, but its instance is located in the same text segment as
the label, although the label does contain a delimiter ‘:’. It would be interesting
to extend DeepMiner to handle such cases. DeepMiner also made some errors in
Amazon.com. For example, currently it is difficult for DeepMiner to recognize
that only Prentice Hall in Prentice Hall (feb 8, 2008) is an instance of publisher.
We are currently developing a solution which exploits the existing ontology to
perform segmentation on the text segments.

7 Discussions and Future Work

We now address the limitations of the current DeepMiner system. The first issue
to address is to make the learning of presentation patterns more robust, e.g.,
handling possible non-table constructs. Currently, the relative positions of at-
tributes and their values are obtained by analyzing their appearance in the DOM
trees. An alternative is to render the data page with a Web browser and obtain
the spatial relationships (e.g., pixel distances and alignments) of attributes and
values from the rendered page. But this approach has a potential disadvantage
of being time-consuming.

Second, we plan to perform additional experiments with the system and fur-
ther examine its performance. Preliminary results indicated that data pages are
typically rich in attributes and values, and that a dozen of data pages per Web
site are often sufficient for learning a sizable ontology. As such, we expect our
approach to be scalable to a large number of Web sites.

Finally, it would be interesting to combine our approach with the approaches
of learning concepts and instances from the Web services already existing in the
B2B domain (e.g. [17]). Further, the ontology learned with our approach can be
utilized to train concept and instance classifiers, which can then be employed to
markup the Web services by the approaches such as [15].

8 Conclusions

We have described the DeepMiner system for learning domain ontology from the
source Web sites. The learned ontology can then be exploited to mark up Web

Bootstrapping Domain Ontology for Semantic Web Services 21

services. Its key novelties are (1) incremental learning of concepts and instances;
(2) effective handling of the heterogeneities among autonomous sources; and (3)
a machine learning framework which exploits existing ontology in the process
of learning new concepts and instances. Preliminary results indicated that it
discovers concepts and instances with high accuracy.

We are currently investigating several directions to extend DeepMiner: (a)
employ the learned ontology to segment complex text segments and recognize
instances in the segments; (b) utilize the instances gleaned from data pages
to assist in matching interface attributes; and (c) combine DeepMiner with the
approach of learning domain ontology from texts.

Acknowledgment. This research is supported in part by the following grants
from NSF: IIS-0414981 and IIS-0414939.

References

1. L. Arlotta, V. Crescenzi, G. Mecca, and P. Merialdo. Automatic annotation of
data extracted from large Web sites. In WebDB, 2003.

2. http://metaquerier.cs.uiuc.edu/repository/.
3. B. Benatallah, M. Hacid, A. Leger, C. Rey, and F. Toumani. On automating web

services discovery. VLDB Journal, 14(1), 2005.
4. F. Casati and M. Shan. Models and languages for describing and discovering e-

services. In Tutorial, SIGMOD, 2001.
5. The OWL-S Services Coalition. OWL-S: Semantic Markup for Web Services.

http://www.w3.org/Submission/OWL-S/.
6. V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner: Towards automatic data

extraction from large Web sites. In Proc. of VLDB, 2001.
7. G. Denker, L. Kagal, T. Finin, M. Paolucci, and K. Sycara. Security for daml web

services: Annotation and matchmaking. In ISWC, 2003.
8. M. Dumas, J. O’Sullivan, M. Hervizadeh, D. Edmond, and A. Hofstede. Towards

a semantic framework for service description. In DS-9, 2001.
9. D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF. Electronic

Commerce: Research and Applications, 1, 2002.
10. A. Heß and N. Kushmerick. Machine learning for annotating semantic web services.

In AAAI Spring Symposium on Semantic Web Services, 2004.
11. F. Leymann. WSFL (Web Service Flow Language), 2001.
12. B. Li, W. Tsai, and L. Zhang. Building e-commerce systems using semantic appli-

cation framework. Int. J. Web Eng. Technol., 1(3), 2004.
13. T. Mitchell. Machine Learning. McGraw-Hill, 1997.
14. M. Paolucci and K. Sycara. Semantic web services: Current status and future

directions. In ICWS, 2004.
15. A. Patil, S. Oundhakar, A. Sheth, and K. Verma. METEOR-S: Web service anno-

tation framework. In WWW, 2004.
16. S. Raghavan and H. Garcia-Molina. Crawling the hidden Web. In VLDB, 2001.
17. M. Sabou, C. Wroe, C. Goble, and G. Mishne. Learning domain ontologies for web

service descriptions: an experiment in bioinformatics. In WWW, 2005.
18. G. Salton and M. McGill. Introduction to Modern Information Retrieval. McCraw-

Hill, New York, 1983.

22 W. Wu et al.

19. K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller. Adding semantics to web
services standards. In ICWS, 2003.

20. SOAP. http://www.w3.org/TR/soap/.
21. http://uddi.microsoft.com/.
22. UDDI. http://www.uddi.org/.
23. D. VanderMeer, A. Datta, et al. FUSION: A system allowing dynamic Web service

composition and automatic execution. In CEC, 2003.
24. L. Vasiliu, M. Zaremba, et al. Web-service semantic enabled implementation of

machine vs. machine business negotiation. In ICWS, 2004.
25. J. Wang and F. Lochovsky. Data extraction and label assignment for Web

databases. In WWW, 2003.
26. WSDL. http://www.w3.org/TR/wsdl/.
27. W. Wu, C. Yu, A. Doan, and W. Meng. An interactive clustering-based approach

to integrating source query interfaces on the Deep Web. In SIGMOD, 2004.

Systematic Design of Web Service Transactions

Benjamin A. Schmit and Schahram Dustdar

Vienna University of Technology, Information Systems Institute,
Distributed Systems Group, Vienna, Austria, Europe

{benjamin, dustdar}@infosys.tuwien.ac.at

Abstract. The development of composite Web services is still not as
simple as the original vision indicated. Currently, the designer of a com-
posite service needs to consider many different design aspects at once.
In this paper, we propose a modeling methodology based on UML which
separates between the four concerns of structure, transactions, workflow,
and security, each of which can be modeled by different experts. We have
developed a proof-of-concept tool that is able to extract information from
the model and transform it into a computer-readable format.

1 Introduction

Web services have become more and more commonplace during the last few
years. An idea that has been associated with them from the start is that of
composition: Web services should be located at run-time and assembled semi-
automatically to provide more complex services. This goal, however, still involves
some unsolved research questions, among others in the field of distributed long-
running transactions.

An important aspect of Web service composition is that the designer or main-
tainer of a composite service until now had to be an expert in several fields. We
have identified a need for knowledge about Web service structure (which ser-
vices are used by which composite services), transactional issues, security issues,
and about the workflow of the composite service. We therefore propose to split
composite Web service design into these four views. Four largely independent
models can then be created by different experts, with connections between them
only where it is necessary.

Minor updates to a composite service are also facilitated by our approach
since only a subset of the design diagrams need to be changed. Software tools
can further help the programmer by automating transformations from design
diagrams to (preliminary) code. Therefore, we have based our methodlogy on
the Unified Modeling Language (UML), which is already supported by most
design tools.

The methodology has not yet been fully completed, but the models developed
with it can already be used profitably. As a proof of concept, we have devel-
oped a transformation tool based on the widely used Eclipse platform which
extracts transaction information from the model. The output conforms to the

C. Bussler and M.-C. Shan (Eds.): TES 2005, LNCS 3811, pp. 23–33, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

24 B.A. Schmit and S. Dustdar

WS-Coordination specification and could easily be incorporated into a Web ser-
vice platform implementing this specification.

Section 2 introduces a composite Web service case study that will be used to
illustrate our work. Section 3 presents the elements of our UML metamodel and
applies this metamodel to the case study. Section 4 presents our modeling tool
and shows how it can extract information from the model created from our case
study. Section 5 presents related work, and Section 6 concludes the paper.

2 Case Study

In this section, we will introduce a case study which we will refer to throughout
the paper. Instead of using the traditional composite Web service example of a
travel reservation system, we refer to our case study first introduced in [1], which
describes the production of a movie in terms of Web services. Modeling such a
comprehensive example with Web services may involve unprecedented design
decisions as well as unexpected outcomes. It should lead to a more realistic
estimate of the benefits of our methodology.

1

1

Crew

+ getCrewMemberList():CrewMemberList
+ getEquipmentList():EquipmentList
+ getTeamList():TeamList

Equipment

+ getEquipmentDescription():String
+ getEquipmentName():String

ExternalExpertContract

− contractDomain:String

Team

+ getTeamMemberList():CrewMemberList

*1

*

1

*

*

Person

− name:String
− address:String
− contactAddress:String

+ getServiceList():ServiceList
+ addService(service):String
+ removeService(service):String

Director

+ getExternalExpertList():ExternalExpertList
+ getCrewList():CrewList
+ hireExternalExpert(externalExpert, domain)
+ hireCrew(crew, from:Date, until:Date)

ExternalExpert CrewMember

Production

1

*

− taskName:String

+ addProductionTask(task)
+ getCrewList():CrewList

+ moveCrews(crewList, from:Location, to:Location)

ProductionTask

* *

Location

− address:String

− from:Date
− until:Date

+ getLocationDescription():String

*

1

1

1

*

*

*

*

**

*

1

*

1

CrewContract

− validFrom:Date
− validUntil:Date

− name:String
− serviceDescription:String

+ getServiceDescription():String
+ getServiceEquipment():EquipmentList
+ getServiceName():String
+ getServiceDomain():String

Service

+ getContractDescription():String

Contract

Fig. 1. Film production case study

Figure 1 shows an overview on the case study. Because of the space limitation,
we will concentrate on how the director of the movie hires film crews for the
production of the film and external experts who assist him with their expertise
(depicted in grey in Figure 1). Both processes need to be handled within a
transaction scope.

Systematic Design of Web Service Transactions 25

In our example, experts and crews provide Web services which may be looked
up via a Web services registry. A software architect in the director’s office com-
poses these services into a new service, which is then used by the director.

3 The UML Metamodel

We will now introduce a uniform methodology for Web services modeling based
on the Unified Modeling Language (UML, [2]). An overview on this methodology
has first been presented in [3].

A D

E

C

B

Structural Diagram

Workflow Diagram

Security Diagram

Start End

BusinessActivity

Properties: ...

AtomicTransaction

WS

Transactional Diagram

Fig. 2. A Design methodology for Web services

Figure 2 depicts the design idea. It is based on the paradigm of separation
of concerns. The four concerns identified so far are structural, transactional,
security, and workflow issues. (The order is different in the figure because we
focus on the transactional diagram.) Each concern can be modeled by an inde-
pendent expert, and the Object Constraint Language (OCL; part of the UML
specification) is used to establish references between the diagrams.

As we have demonstrated in [3], using separate diagrams for separate de-
sign aspects makes the model easier to read, and different experts can work
on the design simultaneously. The obvious drawback of this separation, the
higher complexity of the methodology, is kept as small as possible by using
OCL references between the different layers. We believe that workflow and
transaction aspects belong to separate layers because this eases later correc-
tions (e.g., adjusting transaction quality of service parameters). On the other
hand, a part of the workflow diagram may be referenced e.g. as a compensation
handler.

26 B.A. Schmit and S. Dustdar

Failure Success

Query next
expert

Get Offer

Evaluate best
offer

Choose Expert

Hire Expert
[else, failure]

next[experts left]

final

hire

fallback

[failure]

Hire External Expert

Get Crew

Locate crew
according to
requirements

Hire Crew

[failure, crews left]

retry

hire

Hire Crew

ok

Hire

Start

start

fail

[failure]
fail

[failure]

fail

[failure, no crews left]

ok

Fig. 3. Example structural diagram

3.1 The Structural Diagram

For the structural diagram, we have chosen a UML statechart diagram. The
Unified Modeling Language [2] has been chosen because it is widely used for
modeling software and fits our purposes. We chose a statechart diagram (instead
of adding a new diagram type that might more closely describe Web service
structure) because existing tools already support this diagram type. Since we
have not yet specified the workflow diagram, some workflow details are still
included in the structural diagram.

The semantics that have been added to the diagram for Web services modeling
(guards and threads maintain their existing semantics) are shown in Table 1.

Figure 3 shows a structural diagram of our example. Elements (transitions)
from this diagram will be referenced in the transactional diagram.

Table 1. Added semantics for the structural diagram

Start element. Processing of the composite Web service
starts here.

End element. Processing of the composite Web service
terminates here. Annotations may be either Success or
Failure, which indicate whether the composite service ter-
minates normally or abnormally at that point.

Transition. Indicates that another task of a Web service
is handled next, or that the Web service is started (from
the start element) or terminated (to the end element).

Task
Description

Composite Task Task. Composite tasks contain inner elements (tasks,
transitions). Instead, non-composite tasks may contain
a description (not intended to be processed).

Systematic Design of Web Service Transactions 27

3.2 The Transactional Diagram

The transactional view is formed by a UML class diagram. Again, we have cho-
sen an existing UML diagram type so that existing UML tools do not need to
be modified for processing the transactional diagram. We have used OCL refer-
ences to identify the locations within the structural diagram where transactions
are started, committed, or aborted. A UML profile describes the additional con-
straints for the transactional diagram.

In the diagram, a transaction is depicted as a UML class, i.e., as a box with
three compartments. The first compartment contains the name of the transaction,
a stereotype describing the transactional semantics, and tagged values that de-
scribe quality of service attributes. The second compartment names the partici-
pating Web services (the keyword dynamic indicates that the Web service is to be
located at run-time, a process which is not covered by this paper). The third com-
partment holds the references to the start and end of the transaction, as well as
invocations to other Web services (starting points for other transactions). Finally,
the inheritance relationship is used to model subtransactions. Table 2 defines the
keywords used within the UML profile for the transactional diagram.

Figure 4 shows an example of a transactional diagram. The three main
transactions corresponding to the first two levels of states in Figure 3 are easily
derived from the structural diagram. The start and termination transitions are
indicated by OCL references, in the outermost transaction these are Start.start,
HireCrew.ok, ChooseExpert.fail, GetCrew.fail, and HireCrew.fail. They

<<BusinessActivity>>
HireExpertTransaction

{compensation=true,
timeout=3d,
compensationTimeout=7d}

expert: dynamic

<<constructor>>
Start.start
<<destructor>>
HireExpert.ok
ChooseExpert.fail

<<BusinessActivity>>
HireCrewTransaction

{compensation=true,
timeout=3d,
compensationTimeout=7d}

crew: dynamic
getCrew: CrewService

<<constructor>>
HireExpert.ok
<<destructor>>
HireCrew.ok
GetCrew.fail
HireCrew.fail
<<invocation>>
locateCrew

<<constructor>>
HireCrewTransaction.locateCrew
<<destructor>>
GetCrew.hire
GetCrew.fail

LocateCrewTransaction
<<AtomicTransaction>>

{compensation=true,
timeout=10m}

{compensation=false,

<<BusinessActivity>>
HireTransaction

timeout=14d}

expert: HireExternalExpert
crew: HireCrew

<<constructor>>
Start.start
<<destructor>>
HireCrew.ok
ChooseExpert.fail
GetCrew.fail
HireCrew.fail

Fig. 4. Example transactional diagram

28 B.A. Schmit and S. Dustdar

Table 2. Keywords in the transaction profile

Keyword UML Scope Description
Invocation Class Stereotype A Web service invocation running without

a transactional scope, i.e. no transaction.
AtomicTransaction Class Stereotype An ACID transaction, as defined in [4].
BusinessActivity Class Stereotype A long-running, non-ACID transaction, as

defined in [5].
compensation Class Tagged Value Flag that specifies whether the transac-

tion as a whole can be compensated.
timeout Class Tagged Value Maximum time interval that the transac-

tion can be active before it is rolled back.
compensationTimeout Class Tagged Value Maximum time interval measured from

the start of a transaction that a commit-
ted transaction can be compensated.

dynamic Attribute Type Indicates that a Web service is to be
bound at run-time.

constructor Method Stereotype Starting point for the transaction.
destructor Method Stereotype Termination point for the transaction.
invocation Method Stereotype Starting point for a subtransaction which

is not depicted in the structural diagram.

correspond to the arrows entering and leaving the Hire state in the structural
diagram.

Our example, however, also contains a fourth transaction that is used for
finding film crews that may later be contacted to participate in the current
production. Instead of referencing the structural diagram, the starting point of
the LocateCrewTransaction lies within the HireCrewTransaction, i.e. within the
transactional diagram itself. In the HireCrewTransaction, this starting point is
described as a method stereotyped invocation.

3.3 Security and Workflow Issues

Since security aspects should be considered as early as possible, we propose the
inclusion of security parameters (e.g., which Web service calls/transactions need
to be encrypted or signed) in the design phase. We do not have developed a
diagram for security yet. We intend to use OCL for references to entities in both
the structural and the transactional design diagram, but this is still subject to
future work.

The workflow diagram will offer a high-level view on the composite Web ser-
vice. This design view will cover issues that cannot be addressed by the struc-
tural and transactional diagram alone, e.g. some of the challenges introduced in
[3]. This diagram will reference elements of the structural and the transactional
view.

Systematic Design of Web Service Transactions 29

4 Tool Support

In order to show the usefulness of our design approach, we have implemented
a proof-of-concept tool that works on the transactional design diagram. It has
been built on the Eclipse platform [6] extended by the IBM Rational Software
Architect tool suite [7].

4.1 Architecture

Eclipse is a highly modular integrated development environment for Java which
also offers basic support for the Unified Modeling Language (UML, [8]) through
the Eclipse Modeling Framework (EMF, [9]).

The IBM Rational Software Architect extends this platform, among other
things, by adding a visual editor for creating and maintaining UML models.
Transformations allow the developer to automatically transform the model into
a code skeleton and synchronize changes in design and code. Transformations
for creating Java, EJB, and C++ code are included.

We have written an extension to this platform which adds a new trans-
formation method to the modeler. It extracts the transactions from a UML
class diagram following the specification of our transactional diagram. The out-
put currently consists of a coordination context for use in WS-Coordination,
WS-AtomicTransaction, and WS-BusinessActivity [10, 4, 5], however, it can eas-
ily be adapted to confirm to other transaction specifications.

Fig. 5. The transformation plugin

30 B.A. Schmit and S. Dustdar

4.2 Application to the Case Study

Figure 5 shows the transactional diagram on which the transformation is invoked
in the so-called modeling perspective. The modeling perspective consists of four
windows:

The model explorer (top left) shows a tree view of the elements within the
project. In the example, we see the model with two diagrams and the Transaction
Profile which defines the stereotypes used in the transactional diagram. The
outline window (bottom left) shows a bird-eye view on the current diagram.

In the main window (top right), a part of the transactional design diagram
can be seen. The class HireTransaction has been selected.

In the bottom right window, properties of the selected transaction can be
seen. Within the EMF, they have been modeled as attributes to the Business-
Activity stereotype of the Transaction Profile UML profile. This helps to keep
the diagram lean (because such attributes are per default not shown in the main
window), but still allows for a simple extraction by our plugin.

Figure 6 shows a simple output XML file the transformation plugin has gen-
erated from a part of our design. Right now, only the transactional model is
considered by the prototype tool, but already its output could be used as a co-
ordination context in a WS-BusinessActivity transaction. Changes in the design
lead to changes in the context, taking some of the load away from the program-
mer of the composite Web service.

Fig. 6. Output of the transformation plugin

Systematic Design of Web Service Transactions 31

4.3 Outlook

In the future, we plan to extend the tool so that it allows more comprehensive
modeling and also considers the structural view. We aim to be able finally to
extract a process description in BPEL [11] and/or a choreography description
in WS-CDL [12] from our model, thereby greatly easing the task of Web ser-
vice composition. Using the information contained in the design diagrams, these
descriptions can be enriched by using various additional Web service related
specifications.

When this work has been completed, we will explore the potential for further
automation through the use of a security and a workflow diagram.

5 Related Work

Several independent (sets of) Web service transaction specifications have been
released: WS-Coordination, WS-AtomicTransaction, and WS-BusinessActivity
[10, 4, 5] have been used for the implementation of our tool. Possible alternatives
would have been WS-CAF ([13], consisting of WS-Context, WS-Coordiation
Framework, and WS-Transaction Management) or BTP [14].

Orriëns, Yang, and Papazoglou [15] divide the process of Web service compo-
sition into four phases: definition, scheduling, construction, and execution. The
design should become more concrete at each step. UML is used as well, however,
the model is founded on the design process and not on separation of concerns.

Dijkman and Dumas [16] also state the need for a multi-viewpoint design
approach for composite Web services. Their paper discusses the views of interface
behavior, provider behavior, choreography, and orchestration and uses Petri nets
for the model itself. Distributed transactions are not mentioned.

Benatallah, Dumas, and Sheng [17] also use statechart diagrams to model
composite Web services. Transactional behavior is mentioned as future work,
but as yet there is no systematic approach for modeling this.

Karastoyanova and Buchmann [18] propose a template technique for Web
services to ease service composition. Templates here are parts of a business
process description that can be used for Web service composition. The concept
may prove useful for transforming our model diagrams into business process
specifications in the future.

Loecher [19] discusses properties of transactions in a distributed middleware
setting. Though the author writes about Enterprise JavaBeans, some of the work
can be applied to Web services as well.

Henkel, Zdravkovic, and Johannesson [20] mention the difference between
technical and business requirements. Their paper proposes a layered architec-
ture that allows to transform the business representation into a more technical
representation. Several aspects of process design are described, among them also
a transactional aspect.

Jablonski, Böhm, and Schulze [21] propose a separation of concern approach
for workflow modeling called workflow aspects. They distinguish between a func-
tional, a behavioral, an informational, an operational, and an organizational as-

32 B.A. Schmit and S. Dustdar

pect. The book surveys workflow modeling and also mentions transaction and
security issues.

Further information about Web service transaction specifications can be found
in [22]. Database transactions are covered by [23], and additional information
about advanced transaction models can be found in [24, 25].

6 Conclusion

In this paper, we have introduced a modeling methodology for composite Web
services based on UML. The methodology is based on the concept of separa-
tion of concern, i.e., several experts can work on different aspects of the design
concurrently. We have defined the structural and the transactional diagram and
outlined our future work on the workflow and security diagrams.

We have shown the usefulness of our approach by implementing a transfor-
mation tool based on the Eclipse platform. This tool extracts transaction infor-
mation from the model and transforms this information into a machine-readable
XML document following the WS-Coordination specification.

The next steps in our research will be the development and formalization of
the workflow and security diagrams. Also, we will expand our transformation
tool towards a more comprehensive view on the model. Hereby, we hope to be
able to automatically generate more complex descriptions, e.g., a BPEL or WS-
CDL description. This automation will help designers to considerably simplify
the development of composite Web services.

References

1. Schmit, B.A., Dustdar, S.: Towards transactional web services. In: Proceedings of
the 1st IEEE International Workshop on Service-oriented Solutions for Cooperative
Organizations (SoS4CO’05), 7th International IEEE Conference on E-Commerce
Technology, Munich, Germany, IEEE (2005) To be published.

2. OMG: The unified modeling language, version 2.0. Specification (2004)
3. Schmit, B.A., Dustdar, S.: Model-driven development of web service transactions.

In: Proceedings of the 2nd GI-Workshop XML for Business Process Management,
11. GI-Fachtagung für Datenbanksysteme in Business, Technologie und Web, Karl-
sruhe, Germany, Gesellschaft für Informatik (2005) To be published.

4. BEA, IBM, Microsoft: Web services atomic transaction (WS-AtomicTransaction).
Specification (2004)

5. BEA, IBM, Microsoft: Web services business activity framework (WS-
BusinessActivity). Specification (2004)

6. Beck, K., Gamma, E.: Contributing to Eclipse. Principles, Patterns, and Plug-Ins.
Addison-Wesley (2003)

7. Lau, C., Yu, C., Fung, J., Popescu, V., McKay, E., Flood, G., Mendel, G., Winch-
ester, J., Walker, P., Deboer, T., Lu, Y.: An Introduction to IBM Rational Appli-
cation Developer: A Guided Tour. IBM Press (2005) To be published.

8. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. 2nd edn. Addison-Wesley (2004)

Systematic Design of Web Service Transactions 33

9. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework. Addison-Wesley (2003)

10. BEA, IBM, Microsoft: Web services coordination (WS-Coordination). Specification
(2004)

11. BEA, IBM, Microsoft, SAP, Siebel: Business process execution language for web
services (BPEL4WS), version 1.1. Specification (2003) Adopted by OASIS as WS-
BPEL.

12. Oracle, Commerce One, Novell, Choreology, W3C: Web services choreography de-
scription language version 1.0, W3C working draft 17 december 2004. Specification
(2004)

13. Arjuna, Fujitsu, IONA, Oracle, Sun: Web services composite application framework
(WS-CAF). Specification (2003)

14. OASIS: Business transaction protocol, version 1.1.0. Specification (2004)
15. Orriëns, B., Yang, J., Papazoglou, M.P.: Model driven service composition. In:

Proceedings of the First International Conference on Service Oriented Computing.
Volume 2910 of Lecture Notes in Computer Science., Springer-Verlag (2003) 75–90

16. Dijkman, R., Dumas, M.: Service-oriented design: A multi-viewpoint approach.
International Journal of Cooperative Information Systems 13 (2004) 337–368

17. Benatallah, B., Dumas, M., Sheng, Q.Z.: Facilitating the rapid development
and scalable orchestration of composite web services. Distributed and Parallel
Databases 17 (2005) 5–37

18. Karastoyanova, D., Buchmann, A.: Automating the development of web
service compositions using templates. In: Proceedings of the Workshop
“Geschäftsprozessorientierte Architekturen” at Informatik 2004, Gesellschaft für
Informatik (2004)

19. Loecher, S.: A common basis for analyzing transaction service configurations. In:
Proceedings of the Software Engineering and Middleware Workshop 2004. Lecture
Notes in Computer Science, Springer-Verlag (2004) To be published.

20. Henkel, M., Zdravkovic, J., Johannesson, P.: Service-based processes — design for
business and technology. In: Proceedings of the Second International Conference
on Service Oriented Computing. (2004) 21–29

21. Jablonski, S., Böhm, M., Schulze, W.: Workflow-Management: Entwicklung von
Anwendungen und Systemen. Dpunkt Verlag (1997)

22. Papazoglou, M.P.: Web services and business transactions. World Wide Web 6
(2003) 49–91

23. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Series in Data Management Systems. Morgan Kaufmann (1993)

24. Elmagarmid, A.K., ed.: Database Transaction Models for Advanced Applications.
Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann (1992)

25. Procházka, M.: Advanced Transactions in Component-Based Software Architec-
tures. PhD thesis, Charles University Prague, Faculty of Mathematics and Physics,
Department of Software Engineering (2002)

C. Bussler and M.-C. Shan (Eds.): TES 2005, LNCS 3811, pp. 34 – 47, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Matching Algorithm for Electronic Data Interchange

Rami Rifaieh1, Uddam Chukmol2, and Nabila Benharkat3

1 San Diego Supercomputer Center, University of California San Diego,
9500 Gilman Dr. La Jolla, CA 92093-0505, USA

rrifaieh@sdsc.edu
2 Computer Science Department, Combodia Technological Institute,

P.O. Box 86, Bld. Pochentong, Phnom Penh, Cambodia
uddam.chukmol@itc.edu.kh

3 LIRIS – National Institute of Applied Science of Lyon,
7 Avenue J.Capelle, 69621 Villeurbanne, France
nabila.benharkat@insa-lyon.fr

Abstract. One of the problems in the actual electronic commerce is laid on the
data heterogeneity (i.e. format and vocabulary). This representation incompatibil-
ity, particularly in the EDI (Electronic Data Interchange), is managed manually
with help from a human expert consulting the usage guideline of each message to
translate. This manual work is tedious, error-prone and expensive. The goal of this
work is to partially automate the semantic correspondence discovery between the
EDI messages of various standards by using XML Schema as the pivot format.
This semi-automatic schema matching algorithm take two schemata of EDI mes-
sages as the input, compute the basic similarity between each pair of elements by
comparing their textual description and data type. Then, it computes the structural
similarity value basing on the structural neighbors of each element (ancestor, sib-
ling, immediate children and leaf elements) with an aggregation function. The ba-
sic similarity and structural similarity values are used in the pair wise element
similarity computing which is the final similarity value between two elements.
The paper shows as well some implementation issues and a scenario of test for
EX-SMAL with messages coming from EDIFACT and SWIFT standards.

1 Introduction

Electronic Data Interchange (EDI) is characterized by the possibility of send-
ing/treating messages between information systems without any human intervention.
The emergence of EDI enables companies to communicate easily (e.g. Send Orders,
Funds Transfer, Acknowledgement of receipt, etc.). With growing business, many
companies have to treat different type of messages and standards. Therefore, a large
number of translations are needed in order to enable the communication between an
enterprise and its suppliers and clients [21].

Although the use of XML has simplified the task of data exchange, the problem of
data heterogeneity remains largely unresolved [17]. For the same kind of data, inde-
pendent developers and systems often use XML syntaxes (i.e. messages) that have
very little in common. For example, a Payment Order schema can generate an XML
document where the date of the payment order looks like:

 A Matching Algorithm for Electronic Data Interchange 35

 < PaymentOrder>
 <orderDate> 30/07/2004 </orderDate>
 <PaymentOrder>
Whereas the encoding chosen by a partner defines the date of a payment order

with:
 < POrder>
 <Header>
 <POIssue Date = "30-07-04" />
 </Header>
 </POrder>

These two documents contain the same data (date of payment order) but with two
incompatible representation. Thus, establishing translation between different sources
is a hard task without the presence of an expert which can identify the similarity be-
tween different elements of equivalent representations. In order to simplify this man-
ual tedious and error-prone work, we suggest automating the similarity findings. We
explore in this paper the development of an EDI/XML semi-automatic Schema
Matching Algorithm. The algorithm uses XML Schema, as the pivot, to represent the
schemas of EDI messages.

The paper is organized as follows. In the Section 2, we survey the literature for re-
lated works. We bring out the difficulties in existing approaches to suit EDI Schema
matching. We present in Section 3 our similarity algorithm. We examine the used mod-
ule and argue their usefulness. In section 4, we show some practical issues concerning
implementation, scenario of test, and results. We wrap up our paper with future works
and conclusion showing the assets, apportunities, and limits of our algorithm.

2 Related Works

In order to apply a translation between different representations, we should use two
distinguished processes: matching and mapping. Firstly, matching process helps to
identify the correspondent elements. Afterward a mapping process is required to ex-
press how the matched elements can be mapped. The input of the first is the schema
or the branching diagram of the messages. The output is a list of matched elements.
The input of the mapping process is the list of matched elements and the output is the
individual mapping expression of target elements. We are only interested in this
paper by the first process (i.e. similarity matching). Other works concerning mapping
expression can be found in [22] and [18].

There is much literature on matching algorithms using learning module or thesaurus.
These algorithms differentiate between being content based analysis (instance matching)
XMapper [13], Automatch [2], and LSD [7], representation based analysis (schema
matching) [12], [24], and [15], and usage based analysis (ontology matching) H-Match
[5], Glue [8], and [3]. However, the algorithms with learning capabilities have a handi-
cap concerning the needed training. Using thesaurus for improving the matching process
is very interesting where schema’s elements have linguistically representative names. In
all these approaches, we are only interested by representation based analysis since EDI
branching diagrams, i.e. usage guide, are very likely to schemas.

36 R. Rifaieh, U. Chukmol, and N. Benharkat

Table 1. Functional comparison

In the schema matching, some prototypes have been developed such as Cupid [14],
COMA [6], Similarity Flooding [16] and Rondo [17]. Cupid is an algorithm of schema
mapping between two different representations. It treats the problematic of mapping dis-
covery, which returns mapping elements that identify related element of two schemata. On
one hand, Cupid returns results for low scale schemas in an acceptable time [25]. On the
other hand, Cupid is inefficient when we compare elements with the number of leaf for the
first is double of the second. Similarity Flooding use DOM (Document Object Model) for
representing the working schemas. It compares suffix and prefix in common between the
graph node labels. The algorithm is efficient with high scale schemas but it returns results
after a considerable computing time. COMA can be considered as a framework for
schema matching. It allows using many algorithms with different techniques for results
rendering. This fully-personalized feature makes it difficult to average user to identify the
best combination between different modules. A functional comparison between the
preceding representation based algorithms is shown in Table 1. Evaluation of matching
algorithm can be also found in [19], [25], and [9]. One more interesting approach uses
interactive matching described in [23]. This approach can be very promising since it
brings the matching and the mapping to the user interface at the same time. This lack of
separation can be as well considered one of the drawbacks of this solution.

Nonetheless, these works are not suitable to the matching of EDI messages. In-
deed, EDI messages do not have significant field names, i.e., NAD represents the
Address in EDIFACT and 32A represents the amount of the transfer with Swift.
Though, the close focus on how an element of an EDI message is defined with: tex-
tual description (a short text describing the element’s role in the message), data type,
constraints (condition depending on the instance value of the element and can influ-
ence the value restriction of another element in the message), status (an information
indicating if the element’s existence in the message is mandatory, optional, …), car-
dinality (the possible occurrence number of an element within another element in a
message). Another important fact concerns the meaning variation of an element due

 COMA Cupid Similarity Flooding

Schema Type Relational,
XML Schema

Relational
XML Schema

XML Schema, RDF, UML et
OEM SQL DDL,

Internal Data structure Acyclic oriented
graph

Acyclic oriented graph OIM format labeled graph

Human intervention Possible Specifying domain
vocabulary

-

Auxiliary Information Thesaurus Thesaurus -

Combination of matching
module

Composite Hybrid Hybrid

Threshold User defined Structural similarity
coefficient

User defined

Matching Cardinality 1-1, m-n 1-1, 1-n 1-1, m-n

Reusing preceding match
results

Yes No No

 A Matching Algorithm for Electronic Data Interchange 37

to its location in the message (structural influence). Therefore, we have to identify a
new similarity algorithm, which takes into consideration the specific characteristics of
EDI message’s branching diagram expressed with XML Schema. Furthermore, XML
is becoming the promising format for data exchange in B2B and B2C with ebXML
[10], semantic web techniques [26], and web Services with SOAP.

3 Our Approach

In this section, we are presenting EX-SMAL (EDI/XML semi-automatic Schema
Matching ALgorithm) proposed as a solution for the EDI message’s schema match-
ing. The criteria for matching will include data-type, structure, and elements descrip-
tions. Other information related to an element (constraints, status, cardinality) will be
taken into account for the future extension of this work.

Algorithm EX-SMAL:
Input: S, T: two XML Schemata
Output: set of triplets <Si, Tj, Vsim>
 With Si: an element of S
 Tj: an element of T
Vsim: the similarity value between Si and Tj
Matching(S, T) {
Convert S and T to tree
For each pair of elements <Si, Tj>, compute {
 Basic similarity value.
 Structural similarity value.
 Pair-wise element similarity value.
 }
Filter: eliminate the element pairs having their Vsim
below an acceptation threshold value.
}

Fig. 1. Short description of EX-SMAL

The algorithm (Fig.1) can be understood as follows:

• The algorithm takes two XML schemas (S and T) as the input and returns a set
of triplets <es, et, vsim> in which es is an element of S, et is an element of T
and vsim is the pair wise element similarity value between them.

• To match the input schemata, the algorithm convert them into tree (each edge
represents the containment relation and each node is an XML schema element,
attribute, attributeGroup …). A tree node is an object characterized by its label,
path from root, textual description, data type, constraints, status, and cardinality.

• It computes for each pair of elements <s, t>, the Basic similarity value, Struc-
tural similarity value, and Pair-wise element similarity value.

• It filters results to eliminate the element pairs having their vsim below an accep-
tation threshold value.

38 R. Rifaieh, U. Chukmol, and N. Benharkat

3.1 Basic Similarity

This similarity is computed as the weighted sum of the textual description and data
type similarity. We calculate the basic similarity between a pair of elements, each of
which comes from the input schema. Because we are dealing with a subset of element
criteria, an element has a strong basic similar value with another if their textual de-
scription and data type are strongly similar. We can compute the basic similarity of
two elements s and t by using the following formula:

basicSim(s, t) =descSim(s,t)*coeff_desc+coeff_type*dataTypeSim(s,t)
where coeff_desc + coeff_type = 1 and 0 coeff_desc 1 and 0 coeff_type 1.

3.1.1 Textual Description Similarity
Instead of working on the element label to get the basic similarity of the elements, we
choose the textual description associated with each element. Indeed, the element names
are not useful for comparing EDI message elements because they are neither significant
nor readable. The textual description similarity indicates how much two elements are
similar according to their textual description. We use the information retrieval well-
known technique such as Vector Space Model [11] to solve this problem.

At first, we start normalizing the textual description by removing stop words, affixes,
prefix, and applying stemming techniques. We proceed by extracting the terms’ vector
containing every term with its associated term frequency in the description. We, then,
compute the cosine of the two terms vectors to evaluate a part of the pair wise descrip-
tion similarity. This option is not sufficient to determine the textual description similar-
ity because it takes into account only the term frequency in both descriptions.

Therefore, we add another computing to this description comparison by supposing
that each textual description associated with every element of the target schema forms
a document. The set of these documents create a corpus which will be indexed. With
every single description extracted from a source element, a query is formulated using
all the terms after normalization. Then we search the above index to get a set of scores
indicating how much the query is relevant to the descriptions in the corpus. The query
type we handle takes into account the terms order in the description. The score and
the description affinity resulted from the vectors cosine computing will be finally
used to calculate the description affinity between two given elements.

3.1.2 Data Type Similarity
We used a static matrix defining the XML schema primitive data type affinity. The
values given as the data type affinity between two elements is obtained from the em-
pirical study on those data type format and value boundary. Fig. 2 shows a side of the
datatype similarity matrix. These similarity values help to obtain the basic affinity
degree of two comparing elements’ types.

3.2 Structural Similarity

The structural similarity is computed by using two modules: the structural neighbors
computing and the aggregation function agg. This computing is based on the fact that
two elements are structurally similar if theirs structural neighbors are similar.

 A Matching Algorithm for Electronic Data Interchange 39

Fig. 2. Data type Similarity Matrix

3.2.1 Structural Neighbors
The structural neighbors of an element e is a quadruplet <ancestor(e), sibling(e),
immediateChild(e), leaf(e)> in which: ancestor(e): the set of parent elements from
the root until the direct parent of the element e, sibling(e): the set of sibling elements
(the elements sharing the same direct parent element) of e, immediateChild(e): the set
of direct descendants of the element e, and leaf(e): the set of leaf elements of the sub-
tree rooted at e. The choice for these four items defining the structural neighbors of an
element is related to many structural observations that we can summarize as follows:

Ancestor elements influence their descendants meaning, however, they do not de-
fine the entire structural semantic of a given element. In the Fig. 3, the same label
“name” of two elements express different meaning because one is person’s name and
another is the person’s pet’s name.

Fig. 3. Ancestral item of an element and structural neighbors

Sport

Badminton Hockey Fencing ……

Sport

Badminton Hockey Fencing ……

Sport

Badminton Hockey Fencing ……Badminton Hockey Fencing ……

Sport

Badminton Tennis Squash ……

Sport

Badminton Tennis Squash ……

Sport

Badminton Tennis Squash ……Badminton Tennis Squash ……

Fig. 4. Sibling item of an element and structural neighborhood

Person

…..
Name

Person

Pet

Name

…….

40 R. Rifaieh, U. Chukmol, and N. Benharkat

The sibling nodes are interesting to be considered in the structural neighbors. In
fact, two elements can perfectly share the same ancestral structure but differ by the
influence from their siblings. In the Fig. 4, “Badminton” in the both schemas doesn’t
share exactly the same meaning despite being similarly grouped in the “Sport” cate-
gory. One is considered as a general sport like others but another one is quite a kind
of “racket sport” due to the influence from “Tennis” and “Squash”.

To reinforce the exact semantic of each element, we need to look more detail into the
depth of an element. This is related to the fact that the detail of an element resides in its
composing elements (immediate children and the last level descendant). We choose
to ponder the immediate children because they define the basic structure of the parent
element. The choice of the last level descendant will help us to go through the finest-
grained content or intentional detail of an element. In the Fig. 5, the basic information
related to a book can be composed of its “feature”, “ISBN” and “Author”. The detail of
the book will be clearer if we focus more into the depth of its three basic elements. We
realize that “feature” is the group of “book’s title”, “book’s category” and “book’s page
number”. “Author” can be additionally detailed into “author’s name”, “author’s ad-
dress”, “author’s phone number”, “author’s fax” and “author’s e-mail address”.

Book

Feature

ISBN

Author

Title

Category

Page Number

Name

Contact

Address

Phone

Fax

E-mail

Book

Feature

ISBN

Author

Title

Category

Page Number

Name

Contact

Address

Phone

Fax

E-mail

Fig. 5. Direct descendant and leaf items of an element and structural neighborhood

3.2.2 Structural Similarity Value Computing
The structural similarity value of two elements s and t depends on the similarity value
resulting from the comparison of each pair of structural neighbors items (ancSim(s, t),
sibSim(s, t), immCSim(s, t) and leafSim(s, t)). The similarity value of each structural
neighbors pair is computed by using the function agg(M, thr) which takes a matrix M
(containing the set of basicSim(ei, ej) where ei, ej represent the neighbors of s and t
respectively) and a threshold value thr [0, 100] as input. It returns the aggregated
value of the input matrix M. The function agg uses the arithmetic mean (avg) and the
standard deviation (sd) measures of the descriptive probability to compute the varia-
tion coefficient (vc) of all the values in M. Thus, M forms a population that contains
only the basic similarity values. We use the standard deviation of the arithmetic mean
as dispersion measure because it is sharply more exact than others dispersion meas-
ures (inter-quartile range, variance, etc). We compute the arithmetic mean avg and
standard deviation sd of M respectively with:

 A Matching Algorithm for Electronic Data Interchange 41

avg=

[][]
| ()| | ()|

1 1

| () | | () |

i j

ancestor s ancestor t

i j

s t

ancestor s ancestor t

M
= =

×
 and sd =

[][]()()2

| ()| | ()|

1 1

| () | | () |

i j

ancestor s ancestor t

i j

s t avgM

ancestor s ancestor t

= =

−

×

We compute the variation coefficient vc of M by: vc= 100
sd

avg
× . By comparing

the calculated variation coefficient with the thr value given by a user, agg decides if
the arithmetic mean of M will be the aggregated value of M or not. Wishing that we
get the small dispersion of all the values in M around its arithmetic mean, the main
target of this agg function is to get a descriptive value from a set of values. With the
value thr given by the user we can adjust the aggregated value of the matrix M by
eliminating some low values interfering in the arithmetic mean computing. If the user
gives thr vc, then agg returns avg as the aggregated value of M. If the user gives

thr<vc, we will eliminate all the values from M below: 1
100

thr
avg − interfering in

the arithmetic mean computing. We obtain a sub set of values in M and apply again
the aggregation function. We apply this computing to all the structural neighbors’
items (ancSim(s,t), sibSim(s, t), immCSim(s, t) and leafSim(s, t))[4].

Example: Ancestor item similarity value computing of the element pair s and t.
- ancestor(s) = {s1, s2}, the parent elements of s
- ancestor(t) = {t1, t2}, the parent elements of t

M t1 t2

s1 0.3 0.7
s2 0.9 0.5

Each of the matrix’s case contains a basic similarity value of a pair of elements

(e.g. M[s1][t2]=0.7 is the basic similarity value of s1 and t2).
We have ancSim(s, t) = agg(M, thr) with thr offered by a user. We first compute

the arithmetic mean avg of M by the preceding formula: avg=0.6. Then, we compute
the standard deviation sd of M: sd=0.223. Finally, we compute the variation coeffi-
cient vc of M by: vc=37.16. If the user gives thr vc, then agg returns avg as the ag-
gregated value of M. If the user give thr=10 which is below the calculated vc, we will
eliminate all the values below 1

1 0 0

t h r
a v g − =0.377, from M. We obtain a sub set

of three values in M: {0.7, 0.9, 0.5} and the new aggregated value of M will be the
arithmetic mean of that sub set: avg= 0 .7 0 .9 0 .5

3

+ + =0.7. In the above case, anc-

Sim(s, t) = 0.6 when thr vc and ancSim(s, t) = 0.7 when thr=10.
To sum up, depending on the thr value, we’ll have the different aggregated value

of the same matrix. The rest of the structural neighbor’s item similarity (sibSim(s, t),
immCSim(s, t) and leafSim(s, t)) will be calculated the same way as ancSim(s, t) with
help from the function agg.

42 R. Rifaieh, U. Chukmol, and N. Benharkat

3.3 Pair-Wise Element Similarity

After computing the basic similarity value and the structural similarity value for each
pair of elements, we can compute their pair wise element similarity value. This value
is computed as the weighted sum of the basic similarity value and the structural simi-
larity value. It’s proposed as the final similarity value for a pair of elements in our
approach. Finally the similarity is calculated with:

similarity(s,t)= basicSim(s, t)*coeff_base + structSim(s, t)*coeff_struct
Where 0 coeff_base 1, 0 coeff_struct 1, And coeff_base + coeff_struct = 1

As we are using many coefficients in our algorithm, we suggest a method to calcu-
late the best value of each coefficient. We provide the possibility for the user the run
the performance batch which helps them to determine the good set of coefficients to
use a process of matching. The user can compute the matching between two schemata
S and T, depending on the best set of coefficients obtained from the matching between
S and S and the one obtained from the matching of T and T. This method gives a help
to identify the good set of coefficients to be used in the matching between S and T.
Let us assume that 0, 10 0 ≤≤ α , represents the best value for matching a schema S

with itself and Matching(x,y) is a bounded function with values in [0,1]. Thus,

0
Sx

)S),(x,f(Matching lim αα =
→

 with f is the function of variation for and Matching

(x,S) assuming that all the other coefficients are fix. Let us assume that 1, 10 1 ≤≤ α ,

represents the best value for matching a schema T with itself,

1
Tx

)T),(x,f(Matching lim αα =
→

. We aim at finding the best value to match S with T,

2
)T),(x,f(Matching lim 10

Sx

ααα +
=

→
, since the function f is continuous then the

closed point to 0 and 1 at the same time is the middle point
2

10 αα +
. Thus, we

consider this value as the best coefficient to use for matching S and T. we should
apply this method to discover all the coefficients used for our matching.

4 Practical Issues

4.1 Implementation Issues

After presenting the sequence of the EX-SMAL Algorithm, we implemented a verti-
cal and horizontal prototype for testing its efficiency with real world examples. The
prototype was implemented using Java programming language and using multiple
open-sources API such as Lucene (http://jakarta.apache.org/lucene/doc/index.html).
First of all, to enable the matching for EDI branching diagram written in XML
Schema, we saved the textual information concerning the elements with a correspon-
dent annotation field. According to the algorithm sequence, the six following steps
were executed respectively:

 A Matching Algorithm for Electronic Data Interchange 43

Step 1- Tree building: this step consists of converting the algorithm’s input, i.e.
XML Schemata, into useful tree structures. Each node of these tree is an object con-
taining: the path from the root (e.g. /UNB, /UNB/UNH/DTM,…), the data type, the
textual description, and the name of the node (e.g. UNB, UNH, UNZ, …).

Step 2- Computing basic similarity: this step uses the previously generated data
structure and computes the basic similarity using their textual descriptions and
their data types. The textual similarity was delegated to the API Lucene (http://
jakarta.apache.org/lucene/doc/index.html) and the query type PhraseQuery. This API
(version 1.4.0) offers the possibility to generate a term related vector and to calculate
the term frequency. Furthermore, we combined the result with the results of Phrase-
Query with the cosine of correspondent vectors to find the description similarity. The
data type similarities are extracted from a static table showing the affinity degree
between different types of XML Schema.

Step 3- Finding of the vectors corresponding to elements’ neighbors: this step
consists on creating vectors which correspond to the neighbors of each element in the
source and target schema. Therefore, 4 vectors are defined respectively for each node
in the generated trees covering: ancestor vector, sibling vector, immediate Child vec-
tor, and leaf vector.).

Step4- Computing structural similarity: in this step, the algorithm calculates the
structural similarity between each two nodes of the generated trees. It uses essentially
the basic similarity between their neighbors’ vectors.

Step-5- Computing final similarity: the results found in Step-2 (basic similarity)
and Step-4 (structural similarity) help to calculate the final similarity between each
pair of elements in the entries schemata.

Step- 6- Filtering: this last step consists of choosing between the final similarities
those being most likely useful. Therefore, every final similarity having a value less than
a threshold chosen by the user is going to be eliminated. The set of the remaining simi-
larity can be represented with a line between the used schemata as shown in Fig.6.

The results our similarity matching algorithm can be saved (as XML representa-
tion or any other data structure) for a possible future use with the mapping expres-
sion [20].

Fig. 6. General view of EDI Translator implementing EX-SMAL algorithm

44 R. Rifaieh, U. Chukmol, and N. Benharkat

4.2 Scenario of Test

We tried to apply the EX-SMAL algorithm with some real world examples coming
from the EDI’s well known standards EDIFACT and SWIFT. The scenario consists on
a client using EDI technique in order to pay a supplier invoice. The description of the
scenario is defined in Figure 3 and shows the needed EDI schema matching for facilitat-
ing the process of message translation. We used the schema of the message MT103 (50
elements/2 levels of depth) from SWIFT and PAYMUL (243 elements/16 levels of
depth) from UN/EDIFACT. The choice of matching MT103 with PAYMUL was delib-
erately made as an extreme example because the two schemata are so much different
one from another. We started a test campaign (Batch), using the auto-matching with
varying coefficient values, to find the ones which seem to be the best set to use in the
future matching process. As we used two schemas (PAYMUL and MT103) with the
great structural difference, we recognized that the structural similarity value doesn’t
help much to refine the pair wise element similarity values. However, to make our struc-
tural processing flexible and complete, we observe the structural neighbors of each pair
of elements before deciding which value to use (e.g. matching two neighbors without
sibling elements will have to make the coeff_sib value available for other coefficients
values). Thus, we equally dispatch the value of coeff_sib over other three coefficients.
Finally the value of the remained three coefficients will be the sum of its initial value
with a part of value from the coeff_sib.

Moreover, we implemented the possibility for the user to run a performance batch
which can help to determine the good set of coefficients to use in the matching process.
These test campaigns were done by using only the two schemata above and we varied
the coefficient values to get the ones which seem to be the best set for us to use in the
future matching process. We found a set of values that we fixed as default coefficient
values for later matching, coeff_desc = 0.7, coeff_type = 0.3, coeff_anc = coeff_sib =
coeff_immC = coeff_leaf = 0.25, thr = 20, coeff_base = 0.6 and coeff_struct = 0.4.

Fig. 7. Scenario of Test

Afterwards, we started the matching between MT103 with PAYMUL using these
coefficient values. The precision is calculated with the formula: Pre= number of true
automatic matching / number of total automatic matching. The accuracy (recall) is
calculated with the formula: Accur=number of true automatic matching/ number of
true manual matching. The matching of MT103 and PAYMUL schema gave us 70%
of precision and 25% of recall by using the default coefficients for around 5 minutes

 A Matching Algorithm for Electronic Data Interchange 45

of running time (under a PC Pentium IV with 2.8 GHz of speed and 448Mo of
RAM.). These results are acceptable in respect with the deliberate examples.

5 Future Work

We envisage enlarging our experiments with a larger number of real-world EDI mes-
sage schemas. This includes also an empirical study of performance. Furthermore, we
should consider improving our prototype to allow user’s intervention after the match-
ing process in order to define the mapping expression [22] between the accepted
matched elements (i.e. applying the next step after schema matching), generate auto-
matically the needed scripts and code to be applied at run time, store mapping expres-
sion using XML syntax to be reused for composition of matching, and couple
schema-based matching with instance based matching.

We are seeking, as well, to generalize the EX-SMAL algorithm to fit other domains.
Therefore, we are aiming at applying this algorithm with scientific or biological data.
Indeed, using description-based schema matching (i.e. Information Retrieval) can be
helpful for may other fields outside the E-commerce. Some opportunities can be identi-
fied with the ongoing project Kepler (http://www.kepler-project.org) which aims at
creating workflow system for scientific data. Therefore, schema matching using our
algorithm can help facilitating the processes of connecting actors in the data flow espe-
cially when the ports of processes don’t have representative names. Another attractive
field arises from the need of matching algorithm between schema and trees coming
form biological sources. For instance, BioPax (Biological Pathways Exchange) which is
an effort to create a data exchange format for biological pathway data have not highly
representative element names with very representative description. Thus, applying this
algorithm with these exchange schemas can overcome the current issues of mapping
between different representations or different formats. Furthermore, the algorithm can
be extended to serve as meta-data based schema matching, to be used with database
schema and tables where their meta-data offer expressiveness and coherence better than
physical names type. Quite often in reality, tables in database models don not carry
descriptive names, but are complex encoding of administrative contexts like
TAJO2EEN, or VWSG0012Users, which hampers the identification and understanding
of the concepts behind them [1].

We started a wide collaboration with teams of Kepler project and SCIA graphical
tool [23] in order to reach common goals of schema matching. Further opportunities
with biological data and meta-data based matching will be as well studied with col-
laboration with teams of Biology WorkBench (http://workbench.sdsc.edu/) and
CIPRES project (http://www.phylo.org/). This work can include the use of ontology,
taxonomy, and dictionaries to improve matching, enable mapping and integration
from needed data sources.

6 Conclusion

This algorithm can be classified among the schema based approaches. In fact, it com-
bines between the structural similarity and the textual description similarity. It can

46 R. Rifaieh, U. Chukmol, and N. Benharkat

differentiate from other approaches with the following particularities. (i) It treats the
textual description of the elements, which is richer than other approaches treating the
elements labels such as Cupid, COMA, or Similarity Flooding. Effectively, this choice
was directed by the particularity of EDI branching diagram. We used some known tech-
niques in Information Search (Information Retrieval) to find the similarity of two
elements’ descriptions. (ii) It fully treats the structure of an element by covering the
structural neighbors’ items: ancestors, siblings, immediate Childs, and leafs. However,
some limits can be identified for our algorithm such as: (i) Using many coefficients
make it hard to be initialized by a non-advanced user and the running time to discover
the best coefficients value is difficult and time consuming. (ii) The current algorithm
does not take into consideration other important elements of branching diagram such as
constraint, status, cardinality, etc. A full solution for an EDI matching algorithm should
consider all these elements. (iii) According to the small number of schemata to test, this
evaluation should be improved into a large scaled one.

Acknowledgment

We would like to thank Jacques Savoy (Univ. Neuchâtel), Hong Hai Do (Univ. Leip-
zig), Raj Goswami (Build Fusion), and the member of Lucene Forum for their helpful
feedback and suggestions to overcome the technical and implementation difficulties.

References

1. V. Alexiev et al., “Information Integration with Ontologies, Experiences from an In-
dustrial Showcase”, Willey & Sons Publisher, West Sussex, England, 2005, ISBN 0-
470-01048-7.

2. J. Berlin and A. Motro. “Database Schema Matching Using Machine Learning with feature
selection”. In Proceedings of the 14th International Conference on Advanced Information
Systems Engineering (CAISE’02), May, 2002, Toronto, Ontario, Canada. 15 pages.

3. P. Bouquet, B. Magnini, L. Serafini and S. Zanobini. "A SAT-based algorithm for
Neighborhood Matching". Technical Report, DIT-03-005, February, 2003, Informatica e
Telecommunicazioni, University of Trento, Italy. 14 pages.

4. U. Chukmol, R. Rifaieh, N. Benharkat, “EX-SMAL: an EDI/XML Schema Matching
Algorithm”. To appear in the Proceedings of IEEE Conference on E-Commerce.

5. S. Castano, A. Ferrara and S. Montanelli. “H-MATCH: An Algorithm for Dynamically
Matching Ontologies in Peer-based Systems”. In Proceedings of the SWDB 2003 Confer-
ence, September, 2003, Berlin, Germany. pp. 231-250.

6. Hong-Hai Do and E. Rahm. “COMA - A system for flexible combination of Schema
Matching approaches”. In Proceeding of the 28th VLDB Conference, August, 2002, Hong
Kong, China. pp. 610-621.

7. A. Doan, P. Domingos and A. Halevy. “Reconciling Schemas of Disparate Data Sources:
A Machine Learning Approach”. In Proceedings of ACM SIGMOD International Confer-
ence on Management of Data, May 21-24, 2001, Santa Barbara, California, USA. pp. 509-
520.

8. A.H. Doan, J. Madhavan, P. Domingos and A. Halevy. "Learning to map between Ontolo-
gies On the Semantic Web". In Proceeding of the 11th International Conference on World
Wide Web, May 7-11, 2002, Honolulu, Hawaii, USA. pp. 662-673.

 A Matching Algorithm for Electronic Data Interchange 47

9. Hong-Hai Do, S. Melnik and E. Rahm. “Comparison of Schema Matching Evaluations”. In
Proceedings of the GI Workshop “Web and Database”, October, 2002, Erfurt. pp. 221-237.

10. B. Hofreiter, C. Huemer and W. Klas. “ebXML: Status, Research Issues and Obstacles”.
In the proceedings of the 12th International Workshop on Research Issues in Data Engi-
neering: Engineering e-Commerce/e-Business Systems (RIDE’02), February 24-25, 2002,
San José, California, USA. pp. 7 – 16.

11. D.Grossman, O.Frieder, "Information Retrieval Algorithms and Heuristics". Kluwer Aca-
demic Publishers, 1998.

12. J. Kang, J. F. Naughton. "On schema matching with Opaque column names and data val-
ues". In Proceeding of the 2003 ACM SIGMOD International Conference on Management
of Data and Symposium on Principles of Database Systems, 2003, San Diego, California,
USA. pp. 205-216.

13. L. Kurgan, W. Swiercz and K. J. Cios. “Semantic mapping of XML tags using inductive
machine learning”. In Proceedings of the 2002 International Conference on Machine
Learning and Application (ICMLA’02), 2002, Las Vegas, Nevada, USA. pp. 99-109.

14. J. Madhavan, P. A. Bernstein and E. Rahm. “Generic Schema Matching with Cupid”. In
Proceedings of the 27th VLDB Conference, 2001, Rome, Italy. pp. 49-58.

15. J. Madhavan, P. A. Bernstein et al. "Corpus-based Schema Matching". In Proceedings of
the 18th International Joint Conference on Artificial Intelligent (IJCAI'03), 2003, Aca-
pulco, Mexico. pp. 49 - 53.

16. S. Melnik, H. Garcia-Molina and E. Rahm. “Similarity Flooding: A Versatile Graph
Matching Algorithm and its Application to Schema Matching”. In Proceedings of the 18th
International Conference on Data Engineering (ICDE), 2002, San Jose, California, USA.
12 pages.

17. S. Melnik, E. Rahm and P. A. Bernstein. “Rondo: A programming Platform for Generic
Model Management”. In Proceedings of SIGMOD Conference, June 9-12, 2003, San
Diego, California, USA. pp. 193-204.

18. R. J. Miller et al. “The Clio project: managing the heterogeneity”. SIGMOD Record, 2001,
30(1). pp. 78-83.

19. E. Rahm and P.A. Bernstein. “On Matching Schema Automatically”. Technical Report
1/2001, Department of Computer Science, University of Leipzig, Germany, 29 pages.

20. R. Rifaieh and N.A.Benharkat, “Query based Data Warehousing Tool“, Proceedings of the
5th ACM international workshop on Data Warehousing and OLAP table of contents,
McLean, Virginia, USA, 2002, Pages: 35 – 42.

21. R. Rifaieh and N. A. Benharkat. “An Analysis of EDI Message Translation and Message
Integration Problem”. In Proceedings of the CSITeA-03, June, 2003, Rio De Janeiro, Bra-
zil, 8 pages.

22. R. Rifaieh and N. A. Benharkat. “A Framework for EDI Message Translation”. In Pro-
ceedings of the ACS/IEEE Conference AICCSA’03 July, 2003, Tunis, Tunisia, 10 pages.

23. G.Wang, et al., “Critical Points for Interactive Schema Matching”, In proc of the 6th Asia-
Pacific Web Conference, APWeb 2004, April 14-17, 2004, Hang Zhou, China.

24. L. Xu, D. W. Embley. "Discovering Direct and Indirect Matches for Schema Elements".
In Proceedings of the DASFAA 2003 Conference, March, 2003, Kyoto, Japan. pp. 39-46.

25. M. Yatskevitch. “Preliminary Evaluation of Schema Matching Systems”. Technical Re-
port, DIT-03-028, November, 2003, Department of Information and Communication Tech-
nology, University of Trento, Italy. 13 pages.

26. L. Zamboulis. "XML Schema Matching & XML Data Migration & Integration: A Step
towards the semantic web vision". Technical Report, October, 2003, School of Computer
Science and Information Systems, Birkbeck University of London, England. 20 pages.

A Lightweight Model-Driven Orchestration
Engine for e-Services

Johann Oberleitner, Florian Rosenberg, and Schahram Dustdar

Distributed Systems Group, Institute of Information Systems,
Vienna University of Technology

{joe, rosenberg, dustdar}@infosys.tuwien.ac.at

Abstract. Service-oriented Computing (SoC) in general, and e-service
orchestrations in particular have the potential to increase reuse and to
ease maintainability. Typically, interoperating e-services require orches-
tration efforts, which should be accomplished outside the application
logic itself. In this paper we present a novel MDA-based approach for
generating orchestrations of e-services, enabling the automatic genera-
tion of e-service orchestrations based on UML models. Secondly, such
orchestrations may include GUIs. Thirdly, we discuss our execution en-
vironment supporting heterogeneous e-service orchestrations, including
Web services, COM, CORBA, and .NET objects. Such heterogeneous
software system landscapes are very common today, where many (legacy)
applications still exist and are not wrapped as e-services, nor BPEL pro-
cess descriptions are available.

Keywords: Model-Driven Approach, Service Orchestration, e-Services.

1 Introduction

Today, there is a growing recognition that the Service-oriented Computing (SoC)
paradigm [1], including its property of loose-coupling, facilitates higher flexibility
of interoperable information systems. To increase reuse and to ease maintain-
ability, interoperating e-services require orchestration efforts, which should be
accomplished outside the application logic itself.

In this vein, recent Model-driven Development [2] efforts, provide a viable
conceptual framework allowing software or e-service generation, with (ideally)
minimal extra coding efforts. Current ambitions in research and industry are,
therefore, aimed at moving e-service development towards a higher level of ab-
straction, where models of e-services and their orchestrations are modeled and
the code is generated thereafter. On the one hand, Service-oriented Architec-
tures (SOA) gain wider acceptance as a paradigm for loose coupling of software
services distributed on the Internet. On the other hand, activities carried out
by humans increasingly require higher flexibility and new ways of supporting
loosely-coupled work teams and its involved team members. Today, both users
of e-services, i.e., humans or other e-services, are not integrated well enough to
leverage the full potential of SoC.

C. Bussler and M.-C. Shan (Eds.): TES 2005, LNCS 3811, pp. 48–57, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Lightweight Model-Driven Orchestration Engine for e-Services 49

The contribution of this paper is threefold. We provide: a) an MDA-based
approach for generating orchestrations of e-services, enabling the automatic gen-
eration of e-service orchestrations based on UML models; b) the integration of
GUIs in such orchestrations; and c) an execution environment supporting het-
erogeneous e-service orchestrations, including Web services, COM, CORBA (by
using [3]), and .NET objects. Such heterogeneous software system landscapes
are very common today, where many (legacy) applications still exist and are
not wrapped as e-services, nor BPEL process descriptions are available. Never-
theless, such heterogeneous systems require integration into larger orchestrated
systems.

The remainder of this paper is structured as follows. Section 2 provides a
motivating example from an application domain where we evaluated the viability
of our implementation. Section 3 outlines the modeling support provided in our
implementation. Section 4 discusses the execution engine which processes UML
state- and activity-diagrams and generates required orchestrations. Section 5
presents related work. Section 6 concludes the paper and outlines our future
work.

2 Motivating Example

We motivate our model-driven orchestration approach by considering the follow-
ing example from the hospital domain. When a patient arrives at the hospital
several departments and different specialists are involved in the diagnosis. Each
department has different, heterogeneous software systems — ranging from appli-
cations using COM or CORBA components, and systems offering Web services
— which have to be used to make a diagnosis. Some parts of the workflow are
performed manually, by entering data using a GUI, other steps are performed
automatically, e.g., storing blood-specific data or x-ray results in the database.
In addition, it might be necessary to include data from previous examinations
that are not stored in-house. Therefore, external services need to be queried.
Our scenario, a routine meniscus surgery, has the following workflow: (1) When
the patient arrives at the hospital, her personal data is collected and entered in
the hospital information system by using a GUI application. On finishing the
registration, the health insurance data (containing information from previous
diagnoses, etc.) is collected from the insurance company by using their Web
services, and stored in the patient record. (2) After the registration process, a
doctor is briefing the patient where previous diagnoses and illnesses are discussed
and upcoming examinations are clarified. The doctor directly enters important
notes to the hospital information system by using the provided GUI application.
(3) The standard procedure for a meniscus surgery is to take blood and make
x-rays of the necessary parts. The order of these examinations is not important.
Due to the high amount of data, the x-rays result is not stored in the hospital
information system directly, it is archived in a special database in the radiology
department and linked with the patient record. (4) Then, the patient has to
go back to the doctor to do the final medical examinations and to discuss the

50 J. Oberleitner, F. Rosenberg, and S. Dustdar

patient
arrived

[free slot?] registration

registered

ready for
examination

[doctor available?] briefing

blood
taken

x-rays
ready

[free slot?] examination

[x-rays unavailable?]/
getXRaysActivity

[blood sample valid?] /
collecting and entering results

medical report
collected

......

analysis
completed

Fig. 1. Hospital Workflow State Diagram

results of the blood sample and the x-rays. The notes from the doctor are again
directly entered into the system.

A simplified version of this workflow is shown in Figure 1 as a UML state-
chart diagram. We use this model throughout the paper to explain the concepts
of our model-driven orchestration approach.

3 Model Driven Approach

In the next sections we describe our orchestration models and how these models
are transformed to our internal representation so that our execution engine can
process it.

3.1 Modeling Support

We support UML state machines as well as activity diagrams to build a model
based orchestration for services. Both diagram types are important for building
complex business processes. While state machines are suitable when explicit
states can be identified and activities infer transitions between these states,

A Lightweight Model-Driven Orchestration Engine for e-Services 51

activity diagrams are preferred when no states can be identified or each activity
would require the introduction of pseudo-states. Furthermore, in state diagrams,
the state of an orchestration is always explicit. This explicit state offers support
for long-running transactions, which require such explicit points to wait for other
activities (e.g., user input).

For state-charts, we support most constructs provided by the UML 1.5 stan-
dard [4]. In particular, simple states, composite states to structure an orches-
tration, history states, concurrent states, initial (start) and final (end) states
and transitions, eventually restricted by guards, are supported. In the exam-
ple depicted in Figure 1, we have used an initial state, multiple simple states,
one concurrent state with two nested child states and multiple transitions. To
execute application logic associated with states or transitions, references to an
action may be linked to state entry, state exit or the firing of transitions. An
action itself may be modeled by an activity diagram or another state machine, or
we refer to an invocation. Most UML modeling tools support these links directly
in the model.

According to Figure 1, when a new patient arrives, the first state is entered.
When a free registration slot is available, the registration process is initiated, in
which the nurse enters the patient data by using a GUI application which will be
invoked by the registration action. Such actions can be modeled by activity
diagrams which may include service invocations, but also processing steps of a
GUI. Actions included in a model can refer to GUIs to fill and retrieve data and
to steer the control flow. For instance, user decisions (e.g., pressing buttons) in
a GUI may directly be reflected in the control flow of the orchestration.

After several state transitions, the patient is waiting for a free examination
slot, which leads to states running concurrently: the right part models the blood
examination, whereas the left one models how to deal with required x-rays images
which is handled by the getXRaysActivity in case the x-rays have not already
been available in the system. After both results are available, the concurrent
states are left and the medical report is prepared.

Actions invoked on state entry, state exit and on state transitions, are either
service invocations, activity diagrams or new state machines. The highest flex-
ibility among these possibilities is provided by executing activity diagrams, as
can be seen in Figure 2. Actions in this diagram are activated when no recent
x-ray images are available. It models the possibilities of providing a recent x-ray
image, (1) either by scanning the one brought by the patient, or (2) by request-
ing it via Web service from a medical specialist or (3) create one in-house by
doing an x-ray.

Unlike standard design processes, we require that the models are complete,
since the various models are the single source of input. Due to space restric-
tions, our illustrations are just simplifications of real models. There must not
be any informal actions or guards. For our model in Figure 1, this means that
the guard [doctor available] must refer to system variables, for instance,
[exists (doctorAvailable)]. This expression evaluates to true if there exists
a global system variable doctorAvailable.

52 J. Oberleitner, F. Rosenberg, and S. Dustdar

patient carries
along x-rays?

recent x-rays-
located a medical

specialist?

inventory
patient x-rays

retrieve x-
rays from
specialist

create new
x-ray

[yes] [no]

[no][yes]

Fig. 2. X-Rays Activity Diagram

Modeled orchestrations can be exposed as composite services, therefore, two
special actions for receiving input messages and replying output messages have
to be included in the diagrams. These actions are parameterized by name and
type of the message parts and variable names which are used to refer to within
the orchestration.

3.2 Transformation Tool

The models can be created with any UML standard compliant modeling tool,
which supports XMI [2] export. Our execution engine, however, does not process
XMI directly but requires a data source which supports sequential data, such as
relational databases or XML files.

We have built a transformation tool, which converts XMI files to our se-
quential representation. States and transitions of state machines are parsed and
stored in tabular form. Table 1 shows a subset of the generated state entries.
Nesting of states is handled with the state type column for which concurrent or
composite states can possess child states. The example shows the examination
state from Figure 1 which contains several child states processed concurrently.
The child states themselves are composites.

Table 2 depicts how transitions are stored by the transformation tool. For
instance, the transition that leads to the x-rays ready state in Figure 1 has a
guard and invokes the getXRaysActivity action.

Activity diagrams are also stored in one action table that stores the name
of the action and invocation parameters. To support control flow actions, the
transformation tool assigns unique incremental numerical ids to each action in

A Lightweight Model-Driven Orchestration Engine for e-Services 53

Table 1. Transformed State Example

state name state type parent state initial child
state

entry action exit action

examinations concurrent - - - -
x-ray exami-
nation

composite examinations initial x-rays - -

initial x-rays initial x-ray exami-
nation

- - -

x-rays ready simple x-ray exami-
nation

- - -

x-rays avail-
able

final x-ray exami-
nation

- - -

Table 2. Transformed Transition Example

transition
name

source state target state transition ac-
tion

guards trigger events

getXRays x-rays init x-rays ready getXRays-
Activity

exists
(s::xrays)

-

anonymous x-rays ready x-rays avail-
able

- - -

the activity diagram. The execution engine uses these ids to dynamically select
the next action.

4 Execution Engine

We have built our lightweight execution engine for the .NET platform to execute
the models described in the previous sections. In this section we describe the
mechanisms to process models stored in a format provided by the transformation
tool. The aforementioned tables act as input to the execution engine.

4.1 Processing State Machines

Processing a state machine is initiated by creating an instance of the State-
Machine class. This instance fetches the state and transition tables into mem-
ory. After the instantiation of the state machine, initial states are immediately
entered and followed to the innermost nested state. Figure 3 shows parts of the
class diagram for processing state machines.

Transitions between states are triggered by events. We support different kinds
of events, primarily GUI events caused by user interactions or custom events
caused by programmatic actions. In case one of these events happens, a transition
is fired and the target state becomes activated.

54 J. Oberleitner, F. Rosenberg, and S. Dustdar

StateMachine

Transition

State

Guard

source target

CompositeState SimpleState HistoryState
.....

DataSource

Fig. 3. Execution Engine Class Diagram

On each state entry or state exit, as well as on transitions, an action can
be executed. These actions may refer to activity diagrams, state machines, or
service invocations. There is no particular difference, if a simple state is entered
or if a nested state in a composite state is entered. Furthermore, we emit ad-
ditional .NET events on state entry, state exit or state transition. This allows
the execution of recurring actions for each transition arc without polluting the
process models by referring to the same activity diagrams over and over. For
instance, if a user is not allowed to enter another state dependent on the context
of the data, event handlers may cancel the transition.

In addition to an action that may be executed when a transition event has
fired, a guard expression can be provided. This guard expression returns a
boolean value and is evaluated before a state exit or an optional transition
activity is started. In case the guard evaluates to false the whole transition is
canceled and the old state is restored.

Furthermore, our engine also supports history states. A history state stores
in which substate a composite state resided before the composite state is left.
When the history state is entered again the previous state is restored. Concurrent
states split the execution in multiple paths, which can be executed in parallel.
The child states of a state of type concurrent are in turn composite states that
require an explicit initial and an explicit final state. When a concurrent state is
entered, the initial states of each child state are entered. A concurrent state is
left when each concurrently processed child state has reached a final state. One
drawback of our implementation, however, is that we do not support transitions
from one concurrent state to another.

4.2 Processing Activity Diagrams

Fine-grained actions may be modeled with UML activity diagrams. Our exe-
cution engine processes sequences of actions stored in the data source of the
actiongroup tables. Figure 4 shows the classes involved in processing of action
groups. To execute these action-groups an instance of type ActionGroup is cre-
ated. Similar to states and transitions of state machines, the sequence of actions
is loaded on initialization of the action-group. Actions themselves are realized
with the flyweight pattern [5]. For each single action within a sequence of actions

A Lightweight Model-Driven Orchestration Engine for e-Services 55

InvocationContext InvocationAction

Action Context

ActionGroup

Fig. 4. ActionGroup Class Diagram

a Context object is created that parses and stores the parameters originating
from the action description in the data source. The classes that implement the
actions themselves inherit from the Action class.

When an action-group shall be executed a loop processes each context object
that in turn delegates the execution to the action object. The context provides
not only access to the parameters of the action but supports also access to
variables with different scopes, either system global, statemachine-local, or local
to an activity diagram. Furthermore, the control flow within an activity diagram
may be modified by modifying some predefined fields of the context. We have
predefined various action classes that have different tasks:

Control-flow actions: Some actions deal with modifying the flow within the
sequence of actions. The execution engine supports an if-then-else construct,
too. One parameter provides the conditional expression that is evaluated at
runtime. These expressions refer to any variables stored in the context and
test its existence, support relational operators for comparison of numbers and
strings, and may use logical operators to build complex expressions. Another
action ReturnToOldState, allows that a transition may be canceled by setting a
context flag.
StateMachine actions: A small number of actions allow starting sub-state-
machines that will either block the current machine or can also run in parallel.
Container actions: Some actions allow reading and writing to arbitrary vari-
ables provided by a blackboard. Actions and the state machines can then access
these variables.
Domain-specific actions: We have used the execution engine to also integrate
GUI elements. Hence, we have built a couple of actions that load and show GUI
forms and other actions that allow modification of GUI widgets.
Invocation actions: Services can be executed by using one of the invocation
actions (for CORBA, .NET, COM or Web services). The targets of these calls
are configured externally. The execution of further actions may be blocked by
another action that supports waiting for notifications.

New action types can easily be added by providing an action class which
implements execution semantics and a context class that parses and stores the
configuration parameters.

56 J. Oberleitner, F. Rosenberg, and S. Dustdar

5 Related Work

To the best of our knowledge, there are currently no existing model-driven or-
chestration approaches, which focus on the integration of heterogeneous services
that also include GUI applications.

In the workflow and BPM (Business Process Management) area, numerous
approaches exist that focus on coordinating work through software. Most of
these approaches are not capable of invoking different components such as Web
services, COM, DCOM, Java, EJB. The few existing approaches, such as JOpera
[6] or JBPM [7] use proprietary languages and tools for modeling, whereas we
rely on using standardized tools (UML) to model our workflows. Furthermore,
these tools only support Web services and Java technologies.

Newer approaches, inspired by the service-oriented architecture (SOA), focus
on the orchestration and composition of Web services into higher-level processes
and composed services. Currently, BPEL [8] is increasingly used for the orches-
tration of Web services [9]. We believe that one of the major disadvantages of
BPEL is that the activity types in the orchestration are limited to Web ser-
vices only and that there is currently no modeling standard for BPEL processes.
BPEL-J [10], a joint effort of BEA and IBM, tries to combine BPEL with Java
by adding activities, called Java Snippets, which allow to embed Java code into
the process and allow to interact with J2EE components. Our decision not to use
BPEL as execution language has several origins: Firstly, BPEL is not designed for
combining service invocations and human-centric interactions. Secondly, existing
BPEL execution engines are rather heavyweight, while our execution engine has
only small requirements on the environment and may potentially be executed
on PDAs.

Executable UML [11] is one research direction in the MDA area focusing on
building directly executable models of software systems which are used as input
to execution engines. Usually these approaches focus on rather small domain-
specific areas, such as embedded systems [12]. Our approach, however, focus on
the integration of heterogeneous services.

6 Conclusion and Future Work

Orchestrating e-services provided by different systems is increasingly important
for heterogeneous systems. Current implementations do not focus on a model-
driven orchestration of services provided by heterogeneous systems and the in-
tegration of GUI based applications. Based on an example from the medical
domain, we presented our model-driven approach for specifying service orches-
trations, which allow the invocation of various services implemented in .NET,
CORBA and COM. Furthermore, a service can even be a GUI application inte-
grated into the orchestration. A previous version of the system is already in use
in one hospital in Austria.

We plan to improve modeling the support. Currently, exception handling is
only supported by nesting diagrams, which is tedious to do with modeling tools.

A Lightweight Model-Driven Orchestration Engine for e-Services 57

By specifying rollback points and compensation actions, nesting can be avoided
in the model, and is automatically supported by the transformation tool.

The future work in this area includes porting the execution engine from .NET
to Java, which offers the flexibility, to additionally integrate and invoke compo-
nents and applications written in Java and EJB. Furthermore, a Java solution
allows us to invoke functionality implemented with common component models
in the invocation classes through the Vienna Component Framework (VCF) [13].

References

1. Papazoglou, M.P.: Service-oriented computing: concepts, characteristics and direc-
tions. In: Proceedings of the Fourth International Conference on Web Information
Systems Engineering. (2003) 3–12

2. Frankel, D.S.: Model Driven Architecture – Applying MDA to Enterprise Com-
puting. OMG Press (2003)

3. Oberleitner, J., Gschwind, T.: Transparent Integration of CORBA and the .NET
Framework. In: Proceedings of On the Move to Meaningful Internet Systems 2003:
CoopIS, DOA, and ODBASE (DOA). (2003)

4. Object Management Group (OMG): Unified Modeling Language (UML), Version
1.5. http://www.omg.org/technology/documents/formal/uml.htm (2004)

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

6. Pautasso, C., Alonso, G.: From web service composition to megaprogramming. In:
5th International Workshop on Technologies for E-Services (TES). (2004) 39–53

7. JBoss: Java business process management. http://jbpm.org/ (2005)
8. BPEL: Business Process Execution Language for Web Services Version 1.1.

http://www.ibm.com/developerworks/library/ws-bpel/ (2003)
9. Pasley, J.: How BPEL and SOA are changing web services development. IEEE

Internet Computing 9 (2005) 60–67
10. BEA Systems Inc. and IBM Corp.: BPELJ: BPEL for Java. ftp://www6.

software.ibm.com/software/developer/library/ws-bpelj.pdf (2004)
11. Mellor, S.J., Balcer, M.J.: Executable UML – A Foundation for Model-Driven

Architecture. Addison-Wesly (2002)
12. Raistrick, C., Francis, P., Carter, J.W.C., Wilkie, I.: Model Driven Architecture

with Executable UML. Cambridge University Press (2004)
13. Oberleitner, J., Gschwind, T., Jazayeri, M.: The Vienna Component Framework:

Enabling composition across component models. In: Proceedings of the 25th In-
ternational Conference on Software Engineering (ICSE). (2003)

C. Bussler and M.-C. Shan (Eds.): TES 2005, LNCS 3811, pp. 58 – 71, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Ad-UDDI: An Active and Distributed Service Registry

Zongxia Du1, Jinpeng Huai1, and Yunhao Liu2

1 School of Computer Science,
Beihang University, Beijing, P.R. China

duzx@act.buaa.edu.cn
2 Dept. of Computer Science,

Hong Kong Univ. of Science and Technology, Hong Kong
liu@cs.ust.hk

Abstract. In SOA (Service Oriented Architecture), web service providers use
service registries to publish services and requestors use registries to find them.
The major current service registry specifications, UDDI (Universal Description,
Discovery and Integration), has the following drawbacks. First, it replicates all
public service publications in all UBR (Universal Business Registry) nodes,
which is not scalable and efficient, and second, it collects service information in
a passive manner, which means it waits for service publication, updating or dis-
covery request passively and thus cannot guarantee the real-time validity of the
services information. In this paper, we propose an active and distributed UDDI
architecture called Ad-UDDI, which extends and organizes the private or semi-
private UDDIs based on industry classifications. Further, Ad-UDDI adopts an
active monitoring mechanism, so that service information can be updated auto-
matically and the service requestors may find the latest service information
conveniently. We evaluate Ad-UDDI by comprehensive simulations and ex-
perimental results show that it outperforms existing approaches significantly.

1 Introduction

Web services based on service-oriented architecture (SOA) provide a suitable techni-
cal foundation for interoperability and integration of applications [1, 2]. To make the
web services accessible to users, service providers describe their interfaces with
WSDL [3] and publish the description to service registries, so that service requestors
may find them conveniently [4]. As a result, service registries play an important role
in SOA. Most today’s service registries comply with UDDI [5] (Universal Descrip-
tion, Discovery and Integration) specifications, whose initial focus was geared to
working as UBR (Universal Business Registry), a master directory for all public web
services. However, as shown in Fig. 1, Su Myeon Kim et. al. showed their observa-
tions on public web services [6] on the monitoring result about UBR, in which only
34% of the Web Services (WS) are valid. Here a ‘valid’ Web Service means a WS
with a URL where a WSDL file is retrievable. Furthermore, a large portion of the
downloaded WSDL files are invalid due to syntax errors. On the other side, very few
organizations update their service information after their first publication. According
to the report in [3, 6], there are approximately 16% valid Web Services down weekly.
As a result, the availability of service information in UBR is not good.

 Ad-UDDI: An Active and Distributed Service Registry 59

030801 030912 031024 031205 040116 040227 040409
0

200

400

600

800

1000

1200

1400

N
um

be
r

of
 W

S

Time (Date)

 WS
 valid WS
 complete WSDL
 last-modified

Fig. 1. Web Services in UBR*

We have following observation on current UDDI service registry in SOA. First, it
replicates all web service publications in all UBR nodes, which is not suitable for the
large number of services. Second, it collects service information in a passive manner,
which means it waits for service publication, updating or discovery request passively.
Consequently, the real-time validity of the service information is not guaranteed.

In this paper, we propose an active and distributed UDDI architecture called Ad-UDDI,
which extends and organizes the private or semi-private UDDIs based on industry classifi-
cations. Further, Ad-UDDI adopts an active monitoring mechanism, so that service infor-
mation can be updated automatically and the service requestors may find the latest service
information conveniently. We evaluate Ad-UDDI by comprehensive simulations and
experimental results show that it outperforms existing approaches significantly.

The rest of this paper is organized as follows. Section 2 presents an overview of re-
lated works. Section 3 introduces the design of Ad-UDDI. We show our experimental
results in Section 4 and conclude the work in Section 5.

2 Related Work

Flexible resource management is a key point for the collaboration between partners.
Traditional centralized resource management framework have limitations both in their
failure tolerance and scalability [7]. Recent years, there are more and more attention
changed to the distributed framework [8, 9] for scalability and flexibility.

UDDI v3.0.2 released in 2004 recognizes the needs for multiple registries, as well as
the interactions among registries [5]. Due to the large number of registries focusing on
various interests, service publication and discovery becomes challenging. In addition,
UDDI v3 provides subscription mechanisms to enable affiliate registry to obtain
changed information of a root registry, but there is no approach to get the real status of
the services except waiting passively for the updating requests from service providers.

In ADS (Advertisement and Discovery of Service Protocol) issued by IBM [10],
service descriptions are collected by UDDI crawler rather than being manually

* The copyright of the data and related analysis belongs to the authors of [6] and we have ob-

tained the permission from Su Meyeon Kim for using the data in this paper.

60 Z. Du, J. Huai, and Y. Liu

published. The design of crawler borrows the idea from the web search engine and
sets the file, svcsadvt.xml, to the root of Web Server. When a crawler finds such a file,
it collects the corresponding service information of the web site. However, when the
web crawler goes ahead according to the hyperlink in the web page, there is no hyper-
link information in the web service description. Therefore, the diffusing of crawler is
much difficult. UDDIe [11] is an extended registry for web services, which exploits
the lease time of each service to ensure the availability of service information in regis-
tries. However, the lease time and availability of service is dependent on the relation-
ship established in advance between UDDIe and the service providers, and there is no
method for checking the real availability of services.

MSWSDI [12] is a part of the ongoing METEOR-S [13] project. It is a scalable
P2P registry infrastructure for semantic publication and discovery of web services. It
employs an ontology-based approach to organize the registries and enable domain-
based semantic classifications for all web services. Each of these registries supports
semantic discovery of the web services. In MSWSDI, the relationship among the
registries is managed based on a Registries Ontology. Because the Registries Ontol-
ogy needs specific management and maintenance, the organization of the registries is
not trivial. Authors in [14] proposed a federated architecture for P2P web-services, in
which a federation for UDDI-enabled peer registries is employed in a decentralized
fashion. Service providers publish their services on a centralized UDDI and then join
service syndication. Obviously, a single point of failure cannot be avoided. Also, no
mechanism is designed for getting real status of services.

3 Design of Ad-UDDI

In this section, we introduce the active monitoring mechanism of Ad-UDDI and its
distributed architecture. With the active monitoring mechanism, Ad-UDDI improves the
availability of service information. With the distributed architecture, Ad-UDDI reduces
the performance bottlenecks and improves the availability of service registries.

3.1 Design of Active Monitoring

The availability of service information in registries is of great importance. However,
due to the fact that few organizations update their published information in registries
on time [6], a certain mechanism has to be applied to monitor the service status and
update the information in registries automatically.

MonitorUpdate

Triggered by
Timer

Triggered by Update
Info

Triggered by
Update
Request

Update
finished

Normal

No update

Fig. 2. The state chart of Ad-UDDI

 Ad-UDDI: An Active and Distributed Service Registry 61

In this design, a registry server, called Ad-UDDI server, checks the real time status of
services and collects the service information periodically. The state chart of the Ad-
UDDI server, as shown in Fig. 2, consists of three states, Normal, Update and Monitor.
In the Normal state, the Ad-UDDI server waits for periodically monitoring triggers or
incoming requests. In the Monitor state, the Ad-UDDI server initiates a monitoring
request to the service provider. In Update state, the Ad-UDDI server updates the service
information in Ad-UDDI based on the returned messages from providers.

Once triggered by a timer, the Ad-UDDI transfers from the Normal to the Monitor
state and starts checking the real status of services. If the monitored service has not
been updated yet, the Ad-UDDI returns to the Normal state triggered by a ‘nonUp-
date’ message. If the monitored service is updated, the Ad-UDDI transfers from the
Monitor state to the Update state, executes the information updating process. After
that, the Ad-UDDI returns to the Normal state again. Another way, the Ad-UDDI in a
Normal state transfers into the Update state if it is requested by the providers.

Monitor(serviceKey,
serviceVersion,...)

Check if service is
updated

No

Yes

Check the Received
Message (RM)

No
response
message

nonUpdate

Save_service
newServiceInfo

nonUpdate

Updated
service Inf.

Ad-UDDI Service
Provider

Update Availability
to false

Update ServiceInfo
to newServiceInfo

Fig. 3. The interaction process of active monitoring

Figure 3 illustrates the interaction process of the active monitoring mechanism. The
Ad-UDDI server sends a ‘Monitor’ message to a service provider periodically, contain-
ing the registered service name, service key and service version. The service provider
checks each item in the ‘Monitor’ message with its own. To simplify the handling proc-
ess and reduce the load, only service name, key and version are compared. If they are
identical, a message of ‘nonUpdate’ is returned. Otherwise, new service information is
sent to the Ad-UDDI server via a ‘save_Service’ message which is an API interface of
UDDI. On receiving a ‘nonUpdate’ message, the Ad-UDDI server terminates the pre-
sent monitor thread. On receiving a ‘save_Service’ message, the Ad-UDDI server con-
ducts the service updating process. If there is no message returned within given time

62 Z. Du, J. Huai, and Y. Liu

period, the service is considered to be unavailable and the Ad-UDDI server will step
into ‘Update’, claiming the unavailability of the service.

It is noteworthy that an unavailable service might be caused by a network failure, a
temporal invalidation of the provider’s server, or the undeployed service. Therefore, we
should deal with the unavailable service based on the service monitoring strategies,
instead of a simple deletion. In our implementation, monitoring strategy is often as
follows: 1) service information is to be cancelled after 10 times of monitoring without
any returned message; 2) on receiving a returned message, the Ad-UDDI updates the
service information accordingly and resets the service as available; 3) on receiving a
service discovery request, the Ad-UDDI server searches in available services only.

3.2 Design of Distributed Architecture

The Ad-UDDI adopts a three-layered structure of distributed service registry, as Fig. 4.
The top layer is the root registry layer, in charge of managing the Ad-UDDI service
information. The root is a special Ad-UDDI server, in which every Ad-UDDI server in
the middle layer publishes its own information as a web service. In addition, we do not
let this layer publish and monitor business services so as to reduce its work load. The
middle layer is the business service registry layer, in which all Ad-UDDI servers are
initiated following GICS (Global Industry Classification Standard) [15]. Normally, the
business services belonging to a classification are registered in corresponding Ad-
UDDIs and multiple industry classification services may be registered in one Ad-UDDI.
The bottom is the service layer, in which every service publishes their information to
one or more Ad-UDDI based on to their service type and industry classification.

The solids in Fig. 4 show the publishing relationship, such as business services
publish their information to the corresponding Ad-UDDI and Ad-UDDIs publish their
information to the root. The dash lines in the middle layer denote the neighboring
relationship, such as Ad-UDDI 1, 2 and 4 have established the neighboring relation-
ship according to their classification (“Transportation”). The dash lines in the bottom
layer show the interaction relationship between services.

There are mainly five operations in such distributed architecture, including adding
and closing of an Ad-UDDI, Ad-UDDI neighbor maintenance, service querying, and
service updating.

a) Adding a new Ad-UDDI

In case of adding a new Ad-UDDI, it sends its basic information to the root reg-
istry, and search in the root registry for other Ad-UDDIs in the same industry clas-
sification. The new Ad-UDDI then requests to establish neighboring relationship
with existing same category Ad-UDDIs. When a request is granted, the two Ad-
UDDIs record the other side’s information. Finally, once the neighboring relation-
ship is set up, the publishing and discovering of services are performed within the
middle layer without accessing to the root registry. Therefore, while the root is a
single point of failure, there is little influence on the publishing and discovery of
web services. In that case, only adding or closing an Ad-UDDI will be fail. The
protocol of adding a new Ad-UDDI is presented in Fig. 5.

 Ad-UDDI: An Active and Distributed Service Registry 63

Root

Ad-UDDI-1
Transportation

Ad-UDDI-3
CustomerServices

Ad-UDDI-5
CustomerSe
rvices

Ad-UDDI-2
Transportation

Ad-UDDI-4
CustomerServices/
Transportation

Root Registry Layer

Business Service
Registry Layer

Service Layer

Fig. 4. The distributed architecture

New Ad-UDDI Root
Other Ad-UDDI in
The same industry

"Publish" as service

Successful Ack

Resultset

"Ping"

"Pong"

Neighoring
relationship
esteblished

"Query" Ad-UDDIs with the same industry

Fig. 5. The interaction protocol of adding an Ad-UDDI

b) Closing an Ad-UDDI

In case of closing an Ad-UDDI, the following four modes are possible in this de-
sign: 1) to close an Ad-UDDI directly, discarding all service stored without contacting
the root registry; 2) discard all service information but inform the root registry of its
unavailability; 3) transfer all service information to its neighbors before closing with-
out informing the root; 4) move all service information to neighbors, sends a closing
request to the root registry, and waits for permission. Obviously, the complexities of
above four modes increase in order. In our design, an Ad-UDDI might be closed by
anyone of them. Although the fourth one is usually encouraged, the first mode is used

64 Z. Du, J. Huai, and Y. Liu

when an Ad-UDDI fails to connect with the root registry center due to the network
failure. Figure 6 illustrates the fourth mode interaction protocol.

c) Neighbor Maintenance

Neighboring relationship among the Ad-UDDIs is established when a new member
joins. When an existing member leaves, it is possible that it does inform its neighbors.
In this design, we require the root registry center monitors the status of all Ad-UDDIs
and broadcasts the updated information to all Ad-UDDIs in the same category using
the subscription method in UDDI v3.

Closing Ad-UDDI Neighbor Service Provider

The Number of taking over

Agree

Acknowledge

Request for transfering

Request for agreeing transfering

Transfered service information

Notify transfered

Fig. 6. The interaction protocol of closing an Ad-UDDI

d) Service Querying

Each Ad-UDDI maintains the service information published in it and deals with the
service query from service requestors. To improve the service querying efficiency,
each Ad-UDDI caches the recent searching results. On receiving a service query, an
Ad-UDDI looks up its cache repository. If the desired service is found, the Ad-UDDI
returns the result to the requestor and terminates the query. If there is no target found,
the Ad-UDDI goes on querying in local and neighboring repositories, and then stores
the querying results into local cache after returning the results to the requestor.

e) Diffused Updating of Service Information

In this distributed structure, the updating of the service information is extended to
all neighboring Ad-UDDIs whose local caches have cached related service informa-
tion. This procedure is called the diffused updating of the service information.

With both the diffusing updating and the active monitoring mechanism, the state-
chart of the Ad-UDDI in Fig. 2 is extended into the one shown in Fig. 7. Having up-
dated the service information locally, the Ad-UDDI broadcasts an updating message
to its neighbors, so that the neighboring Ad-UDDIs can update corresponding infor-
mation in their caches.

 Ad-UDDI: An Active and Distributed Service Registry 65

MonitorUpdate

Triggered by
Timer

Triggered by Update
Info

Triggered
by Update

Request

Update
finished

Normal

No update

Broadcast
updating

Broadcast
finished

Fig. 7. The extended state chart of Ad-UDDI

3.3 Implementation Experiences

The implementation of Ad-UDDI prototype server contains four repositories, i.e. the
Local Service Information Repository (LSIR), the Local User Information Repository
(LUIR), the Neighbor Ad-UDDI Information Repository (NAIR) and the Cached
Service Information Repository (CSIR), as illustrated in Fig. 8. The LSIR and the
LUIR are similar with those in UDDI servers. The NAIR and the CSIR are imple-
mented purposely for the Ad-UDDI. The NAIR holds the information of neighboring
Ad-UDDIs. The NAIR stores the neighbor’s name, its access point, its industry classi-
fication, etc. The CSIR caches the service information which has been queried by
requestors before. The major functional blocks to manage the information in the re-
positories are as follows.

User Manager manages the information of the service providers and requestors
registered in current Ad-UDDI. It accepts registration requests from new users, up-
dates the information for registered users, and implements access control.

Scheduler invokes various managers according to requests (such as publishing /
querying).

Local Service Information Manager publishes the service information to the local
service repository, queries the service information in local repository and updates
information in local repository.

Active Monitor connects the service providers who published their services in this
Ad-UDDI, monitors the real-time service status, and updates the service information.

Cached Service Information Manager manages and maintains the CSIR, and
caches the returned queries. On receiving a query requests, it searches in the CSIR for
the matched service. It also guarantees the synchronization of the information. At last,
it manages the cache size. When too much information is cached, the least recently
requested ones will be deleted.

Diffusing Updater performs the information synchronization among the Ad-
UDDIs. When the information of LSIR is changed, it propagates the information to
the neighbors according to the information in the NAIR to update the cached service
information of other Ad-UDDI servers. When updating requests come, it forwards the
request to the Cached Service Information Manager for updating.

Diffusing Querier propagates the service querying requests to neighbors to get
more candidate services.

66 Z. Du, J. Huai, and Y. Liu

Local service Inf.
Manager

User
Manager

Cached Service Inf.
Manager

Active Monitor

Diffusing
Updater

LSIR

CSIR

LUIR

Ad-UDDI
server

Scheduler

Diffusing
Querier

NAIR

Fig. 8. The architecture of Ad-UDDI server

In addition, an Ad-UDDI provides four interfaces including local service monitor-
ing interface, service synchronizing interface, diffusing query interface and user re-
quest interface.

Among them, local service monitoring interface is used to send the active monitor-
ing request to the service provider periodically and wait for the reply messages. The
service synchronizing interface is used to send the updated service information to its
neighbor Ad-UDDIs when its local service information is changed. If the neighbors
have cached this service information, they need update the cached information. The
service diffusing query interface is used to diffuse the local query request to its
neighbors, so that querying can be processed in a larger scope. The user request inter-
face is similar with the interface of traditional UDDI, which is used to receive and
process the diversified requests from users.

4 Performance Evaluation

To evaluate the performance of the Ad-UDDI approach, we coded a simulator using
Java, in which a certain number of Ad-UDDIs, service providers and requestors are
connected to form a mesh network to simulate the situation of Internet.

We use BRITE [16] to generate topologies up to 2,000 nodes with random connec-
tion. The network delay between every two nodes is calculated according to the short-
est path along the physical network topology. Each service is remarked by its name,
key, version, type, access point, etc. In each run, a number of services with diversified
types are deployed into the network.

Each Ad-UDDI in the simulation is able to register the service information in several
industries, while every industry classification can be registered into several Ad-UDDIs.
We distribute the Ad-UDDIs into finite industries and publish the services into

 Ad-UDDI: An Active and Distributed Service Registry 67

Ad-UDDIs based on their types. The root registry is a special Ad-UDDI node, which
only registers the information of the Ad-UDDI services without receiving the publica-
tion of the business services. On the other hand, we simulate UDDI as a centralized
registry without active monitoring method and all services publish their information to
it. In this section, we introduce our performance metrics, and then the simulation results.

4.1 Performance Metrics

The basic function of the Ad-UDDI is to find available web services matching re-
questors’ demands. To better evaluate the Ad-UDDI design, we use the following
metrics: available rate, success rate, average response time, and total traffic cost.

The Available Rate is defined as the ratio of the requests which successfully find
desired and available services at the first return out of all requests. In real B2B envi-
ronment, the service requestor tends to use the service information directly from the
service registry, so the invalidity of discovered service information is very likely to
cause the crash of B2B applications. Therefore, the available rate is an important
metrics in B2B applications.

The Success Rate is defined as the ratio of the requests which successfully find de-
sired and available services out of all requests.

The Average Response Time is defined as the average time elapsed from the issu-
ance of a query till a desired and available service is found. If no appropriate service
is found, the query ends after searching all candidate services which have the same
service type with the request.

The Total Traffic Cost is defined as the traffic of messages incurred by queries and
responses. If the active monitoring mechanism is adopted, the traffic of monitoring
and diffusing updating messages is also considered. We will record the total traffic
cost in 30 days with 10,000 requests.

4.2 Results

In the first simulation, we apply the active monitoring mechanism, where 1,000 ser-
vices are distributed into randomly selected nodes. We set 10 Ad-UDDIs as the regis-
tries with 5 industry classifications and generate 10,000 requests every 3 days to trace
the evolution of the available rate of the queries. The results in Fig. 9 show that the
available rate of information in the registry without active monitoring mechanism
drops to a very low level after 30 days. With the help of AD-UDDI, the available rate
stays in a relatively high level, which means the requestors can always find available
needed services at the first return.

The second simulation is implemented to analyze the response time distribution of
the requests. The service number and the Ad-UDDIs number are the same as in the
first simulation. We disperse 10,000 requests in 30 days and record their response
time. Figure 10 plots the success rate against the response time. With an interval of
active monitoring is 1 day, 96% requests get available services within 1.9 seconds.
Without Ad-UDDI design, only 69% requests can get the available ones within such
time period, and more than 15% requests never find available ones. Larger monitoring
interval leads to longer response time, but smaller query overhead. Figure 11 plots the
response time against system size. The results show Ad-UDDI design is scalable
when the number of nodes increases.

68 Z. Du, J. Huai, and Y. Liu

0 5 10 15 20 25 30

20

40

60

80

100

A
va

il
ab

le
 R

at
e

(%
)

Time (Day)

 UDDI
 Ad-UDDI(Interval = 1)
 Ad-UDDI(Interval = 7)

Fig. 9. Available rate v.s. time with 1000 services

1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7
0

20

40

60

80

100

Query Time (Second)

Su
cc

es
s

R
at

e
(%

)

 UDDI
 Ad-UDDI(Interval=1)
 Ad-UDDI(Interval=7)

Fig. 10. Success rate v.s. Query Time

200 400 600 800 1000
1.75

2.00

2.25

2.50

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(S
ec

.)

Number of Nodes

 UDDI
 Ad-UDDI(Interval = 7)

Fig. 11. Response time v.s. number of services

We then explore the total traffic cost with different service numbers by recording
the cost in 30 days with 10,000 requests. According to Fig. 12, the total traffic cost is
slightly increased with larger number of services. With the same number of services,

 Ad-UDDI: An Active and Distributed Service Registry 69

the query traffic with Ad-UDD is much smaller than without active monitoring. In
Fig. 13, we show the relationship between the total traffic cost and the monitoring
interval with 100 and 1,000 services involved respectively. If we set the monitoring
interval as 1 day, there will be a lot of monitoring cost. On the other side, without
monitoring, we save the monitoring messages but more services have to be checked in
order to find an available service, which means the traffic cost of queries will in-
crease. There is an obvious trade-off between monitoring and query traffic.

Combined with Fig. 9, shorter interval between two monitoring process leads to
higher available rate, but brings larger monitoring traffic cost, as shown in Fig. 13.
We can conclude that the weekly monitoring is a good balance between available rate
and the traffic cost. Furthermore, we can set different interval for various services.
The service with more importance needs smaller interval.

200 400 600 800 1000
90

95

100

105

110

115

To
ta

l T
ra

ff
ic

 C
os

t (
G

B
/3

0d
ay

s)

Number of Services

 (Ad-UDDI (interval=7))
 (UDDI)

Fig. 12. Total traffic cost v.s. number of services

1 7 14 21 28
90

95

100

105

110

115
 Service Number = 100
 Service Number = 1,000

To
ta

l T
ra

ff
ic

 C
os

t (
G

B
/3

0D
ay

s)

Interval (Day)

Fig. 13. Total traffic cost v.s. interval

5 Conclusion

Aiming at resolving the low validity of the public UDDI, we propose an active and
distributed registry, Ad-UDDI, to provide available service information. In this

∞
(UDDI)

70 Z. Du, J. Huai, and Y. Liu

design, the service information is distributed among multiple registries and thus the
single point of failure and bottleneck in one public UDDI is reduced. In our approach,
the root registry takes charge of managing the Ad-UDDI services without any busi-
ness services, so the burden of root registry is lightened. The distributed architecture
of Ad-UDDI may serve as a basic method of connecting the private or semi-private
UDDIs. With the active monitoring mechanism, the real-time availability of the ser-
vice information in the Ad-UDDI is significantly improved.

Acknowledgement

This work was supported in part by China NSFC 90412011, by Hong Kong RGC
Grants DAG 04/05 EG01, and by Microsoft Research Asia.

References

1. M. Luo, M. Endrei, P. Comte, P. Krogdahl, J. Ang, and T. Newling, Patterns: Service_
Oriented Architecture and Web Services. http://www.redbooks.ibm.com/abstracts/
sg246303.html?Open. 2004.

2. D. Booth, H. Haas, and F. McCabe. Web Services Architecture. http://www.w3.org/
TR/ws-arch/. 2004.

3. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description
Language(WSDL) 1.1. http://www.w3.org/TR/wsdl. 2001.

4. Z. Du, J. Huai, Y. Liu, C. Hu, and L. Lei. IPR: Automated Interaction Process Reconcilia-
tion. in Proceedings of the International Conference on Web Intelligence(WI2005). 2005.

5. L. Clement, A. Hately, C.v. Riegen, and T. Rogers. Universal Description Discovery & In-
tegration (UDDI) 3.0.2. http://uddi.org/pubs/uddi_v3.htm. 2004.

6. S.M. Kim and M. C. Rosu. A survey of public web services. in Proceedings of the 13th In-
ternational Conference on the World Wide Web (WWW'04). 2004.

7. M. Cai and M. Frank. RDFPeers: A Scalable Distributed RDF Repository based on A
Structured Peer-to-Peer Network. in Proceedings of the 13th International Conference on
World Wide Web (WWW'04). 2004.

8. W. Hong, M. Lim, E. Kim, J. Lee, and H. Park. GAIS: Grid Advanced Information Ser-
vice based on P2P Mechanism. in Proceedings of IEEE International Symposium on High
Performance Distributed Computing 2004 (HPDC 2004). 2004.

9. L. Xiao, X. Zhang, and Z. Xu. On Reliable and Scalable Peer-to-Peer Web Document
Sharing. in Proceedings of the 16th International Parallel and Distributed Processing Sym-
posium (IPDPS 2002). 2002.

10. W. Nagy, F. Curbera, and S. Weerawaranna. The Advertisement and Discovery of Ser-
vices (ADS) protocol for Web services. http://www-128.ibm.com/developerworks/library/
ws-ads.html?dwzone=ws. 2000.

11. A. ShaikhAli, O.F. Rana, R.J. Al-Ali, and D.W. Walker. UDDIe: An Extended Registry
for Web Service. in Symposium on Applications and the Internet Workshops
SAINT2003). 2003.

12. K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and J. Miller,
METEOR–S WSDI: A Scalable P2P Infrastructure of Registries for Semantic Publication
and Discovery of Web Services. Journal of Information Technology and management,
2005.

 Ad-UDDI: An Active and Distributed Service Registry 71

13. A.A. Patil, S.A. Oundhakar, A.P. Sheth, and K. Verma. Meteor-s: web service annotation
framework. in Proceedings of the 13th International Conference on World Wide Web
(WWW 2004). 2004.

14. M.P. Papazoglou, B.J. Kramer, and J. Yang. Leveraging Web-Services and Peer-to-Peer
Networks. in Proceedings of the 15th International Conference of Advanced Information
Systems Engineering, (CAiSE2003). 2003.

15. GICS Structure and Sub-Industry Definitions. http://www.msci.com/equity. 2005.
16. A. Medina, A. Lakhina, I. Matta, and J.W. Byers. BRITE: An Approach to Universal To-

pology Generation. in Proceedings of the 9th International Workshop on Modeling, Analy-
sis, and Simulation of Computer and Telecommunication Systems(MASCOTS2001).
2001.

WS-Policy for Service Monitoring

Luciano Baresi, Sam Guinea, and Pierluigi Plebani

Dipartimento di Elettronica ed Informazione,
Politecnico di Milano, Piazza L. da Vinci, 32 - 20133 Milano, Italy

{baresi, guinea, plebani}@elet.polimi.it

Abstract. The paper presents a monitoring framework for WS-BPEL processes.
It proposes WS-CoL (Web Service Constraint Language) as a domain-inde-
pendent language, compliant with the WS-Policy framework, for specifying user
requirements (constraints) on the execution of Web service compositions. WS-
Policy and WS-CoL provide a uniform framework to accommodate both func-
tional and non-functional constraints, even though the paper only addresses
non-functional requirements. It concentrates on security, which is one of the most
challenging QoS dimensions for this class of applications.

1 Introduction

Originally, service-centric computing relied on the simple and essential service-oriented
paradigm, where service providers, service users, and service directories were the only
players. Recently, many proposals have tried to extend the service-oriented approach
with issues related to composition, conversation, monitoring, and management [1]. In
particular, this paper focuses on extending the basic features with the capability of mon-
itoring the execution of composed Web services (i.e., WS-BPEL processes), as a way
to assess both their functional correctness and quality of service. Monitoring should
address both functional and non-functional aspects and might involve different parties:
clients may be interested in probing the services they use, providers may assess the
services they offer, but also third party entities might be involved to offer neutral moni-
toring capabilities and collect historical data.

The paper introduces a monitoring approach capable of probing both functional and
non-functional requirements. Functional requirements predicate on the correctness of
the information exchanged between the WS-BPEL orchestrator and the selected ser-
vices; non-functional requirements are about aspects directly related to how well the
service works in terms of, for example, security, transactionality, performance, and re-
liable messaging. In order to probe such a wide range of requirements, the execution
must be analyzed: (1) before invoking the service, that is, before the message to invoke
it exists, (2) after producing the message, but before reaching the target service, (3) be-
fore the return message reaches its destination, and (4) after reaching it. The first two
cases cover the flow from the WS-BPEL orchestrator to the target service, while the
other two cases deal with the opposite flow.

The approach presented in this paper concentrates on client-side monitoring and re-
lies on WS-Policy [2], the emerging standard to define Web service requirements, to
express the monitoring policies associated with WS-BPEL processes, that is, the user

C. Bussler and M.-C. Shan (Eds.): TES 2005, LNCS 3811, pp. 72–83, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

WS-Policy for Service Monitoring 73

requirements (constraints) on running Web services compositions. All constraints are
written in WS-CoL (Web Service Constraint Language), a domain-independent lan-
guage for monitoring assertions.

The paper also describes a prototype component, called Monitoring Manager, that
can be used to extend existing platforms for service offering and invocation1 with mon-
itoring capabilities.

Even though the approach is general, the paper only addresses non-functional as-
pects, and specifically it concentrates on security, one of the most challenging QoS di-
mensions for deploying Web services systems. The approach is exemplified on a simple
case taken from the common scenario of online book shopping. BookShop is an online
bookshop that uses a WS-BPEL process to coordinate all the steps that must be taken
to interact with its clients. Here, we concentrate on the service invocation the process
makes to OnlineBank to register credit-card transactions. We require that this invoca-
tion be encoded using the 3DES algorithm and be pursued only if the total amount to
be charged is less than the amount defined in the user’s preferences. In fact, BookShop
maintains a repository of user preferences to simplify the process of buying books and
registers the client’s credit-card and a money cap. A money cap is useful when a client
wants to avoid spending more than a certain amount of money in a single transaction.

The paper is organized as follows. Section 2 briefly discusses the WS-Policy frame-
work and how related specifications can be used along the Web service life-cycle.
Section 3 introduces the monitoring approach adopted to check the proposed policies
for monitoring. Section 4 introduces WS-CoL, our assertion language adopted to ex-
press non functional requirements. Section 5 presents the architecture of the monitoring
framework and exemplifies how it works. Section 6 briefly surveys related approaches
and Section 7 concludes the paper.

2 WS-Policy and Policy Lifecycle

WS-Policy [2] is emerging as the standard way to describe the properties that character-
ize a Web service. By means of this specification, the functional description of a service
can be tied to a set of assertions that describe how the Web service should work in terms
of aspects like security, transactionality, and reliable messaging. According to [3], an
assertion is defined as “an individual preference, requirement, capability or other prop-
erty”, and the WS-Policy document is in charge of composing such assertions to identify
how a Web service should work. These assertions can be used to express both functional
aspects (e.g., constraints on exchanged data), and non-functional aspects (e.g., security,
transactionality, and message reliability). So far, a couple of languages, namely WS-
SecurityPolicy and WS-ReliableMessaging Policy, have been proposed as a set of WS-
Policy-compliant domain dependent assertions. Similarly, as discussed in Section 4, we
propose WS-CoL (Web Service Constraint Language), as a domain-independent lan-
guage to express monitoring constraints.

As stated in [4], policies can be defined by several actors and during different phases
of the Web service life-cycle (Figure 1). Besides implementing the application, service
developers also specify the properties that must hold during the execution regardless

1 For example, existing service buses.

74 L. Baresi, S. Guinea, and P. Plebani

of the platform on which the services will be deployed (service policies). On the other
hand, service providers specify the features supported by the application servers on
which services are deployed. (server policies). The intersection of service and server
policies results in supported policies, which define the properties of the services de-
ployed on a specific platform. Finally, Web service users state the features that should
be supported by the services they want to invoke (requested policies). By combining
requested policies and supported policies, we obtain the so called effective policies.
Approaches to policy intersection are discussed in [4, 5, 6].

In this paper, we do not concentrate on policy intersection, but on the result produced
by policy intersection, that is, the effective policies. Effective policies represent the set of
assertions that specify the properties of a Web service deployed on a particular server and
invoked by a specific user. The Web service to which effective policies apply is linked
by definition and it can be a simple Web service or a WS-BPEL process. Once effective
policies are derived, services should be monitored at runtime to guarantee that they of-
fer the service levels stated by their associated policies. So, in this paper we propose a
framework capable of monitoring effective policies expressed using WS-Policy.

Application
Server

Web service Service User
invokes

service
policy

requested
policy

server
policy

supported
policy

effective
policy

Fig. 1. Ws-Policy definitions and attachments

WS-PolicyAttachment [7], one of the elements of the WS-Policy framework, sup-
ports the policy life-cycle described above by defining how a WS-Policy document can
be tied to an XML document that represents the subject for which the policy holds.
Notice that the assertions included in the effective policy can be applied at different
levels of granularity: process level, branch of execution level, service invocation level,
message level, or internal variable level. Hereafter, for simplicity, we suppose that all
the effective policy assertions work at the same level and, more precisely, at the ser-
vice invocation level. If the considered service is a WS-BPEL process, policies can be
attached to some of the service invocation activities.

WS-Policy for Service Monitoring 75

3 Monitoring Approach

Runtime monitors [8] are the “standard” solution to assess the quality of running appli-
cations where suitable probes control the functional correctness and the satisfaction of
QoS parameters. Our monitoring approach borrows its grounding from assertion lan-
guages, like Anna (Annotated Ada [9]) and JML (Java Modeling Language [10]), and
is also based on the idea that we want to reuse as much existing technology as possible
as a means to increase its diffusion and acceptability2.

The tradeoff between monitoring and performance might be influenced by many dif-
ferent factors. We cannot define a strict relationship between WS-BPEL processes and
monitoring directives. Users must be free to change them to cope with new and different
needs. For example, the execution of these processes in different contexts might require
a heavier burden in terms of monitoring, while when selected services are well-known
and reliable, users might decide to privilege performance and adopt a looser monitoring
framework.

These considerations led us to propose monitoring directives as stand-alone (exter-
nal) monitoring policies rendered in WS-Policy (see Section 2). These constraints do
not belong to the workflow description, that is, the WS-BPEL process, but they are
weaved with it at deployment-time. Besides the gain in flexibility, with different sets
of monitoring policies that can be associated with the same process, this solution also
allows us to keep a good separation between business and control logics.

The weaving process is governed by BPEL2, which instruments the original WS-
BPEL specification to make it apply the monitoring policies. The pre-processor parses
all the monitoring policies selected for the particular process. For each policy, the em-
bedded location indicates the point of the process in which BPEL2 substitutes the WS-
BPEL invoke activity with a call to the monitor manager, which is then in charge of
evaluating the policy and call the service if it is the case. BPEL2 also adds an initial
call to the monitoring manager, to send the initial configuration (such as the priority at
which the process is being run) to initialize it, and a final call to communicate it has
finished executing the business logic and that resources can be released.

BPEL2 produces a fully-compliant WS-BPEL specification, which is deployed in-
stead of the original one. Monitoring policies are not actually intertwined with the origi-
nal process. BPEL2 only adds calls to the monitoring manager. This means that policies
can change without re-instrumenting the process.

After the weaving process at deployment-time, monitoring policies can be switched
on and off at runtime [11]. Special-purpose parameters, like priority, allow the designer
to select those policies that are to be checked at run-time (they must be a subset of those
selected at deployment time). Notice that the priority associated with monitoring poli-
cies must not be confused with the preference defined in the WS-Policy framework.
The preference defines the internal order among policies, while the priority is used to
define if a policy must be monitored. For example, if a policy has priority lower than
the current one (i.e., the one set by the monitoring manager), the manager skips its ex-
ecution and calls the actual service directly. The monitoring manager, the component

2 The current implementation of the approach as “external” component can be seen as a feasi-
bility study before embedding this technology in a standard WS-BPEL engine.

76 L. Baresi, S. Guinea, and P. Plebani

that oversees the application of the monitoring policies, has a dedicated user interface
that lets the designer change its current priority and thus dynamically modify the impact
that monitoring has on the execution.

4 Web Service Constraint Language

The Web Service Constraint Language, hereafter WS-CoL, is a domain-independent
policy assertion language for specifying user requirements (constraints) on the execu-
tion of Web services. Ws-CoL is a standard assertion language augmented with special-
purpose features to retrieve “external” data. It distinguishes between data collection and
data analysis to differenciate the phase in which information is collected (from external
sources, if needed) from the phase in which stated expressions are evaluated against
collected values. Data can be collected from the process directly (e.g., internal vari-
able), but they can also come from external sources (e.g., exchanged SOAP messages,
metering tools).

Internal variables are accessed by means of the following instruction:

$<name of variable>\<part of variable>

As in the WS-BPEL specification, a variable is an instance of an XML schema.
Since a variable can be composed of several parts, this instruction allows us to access
the different parts.

If data come from external sources, called data collectors, we use the following in-
struction:

\return[Int|String|Boolean](WSDL, OpName, <parameters>)

It defines how to retrieve the information that originates outside the process. We
suppose that data collectors are Web services, therefore the instruction’s parameters
have the following meanings:

– WSDL represents the URL of the WSDL related to the requested data collector. For
example, in Figure 2, WSDL XPATH indicates a data collector capable of extracting
data from XML snippets according to an XPath expression.

– OpName represents the operation supported by the data collector. In the example of
Figure 2, applyXPATH is an operation that returns the value corresponding to an
XPath expression.

– <parameters> represents the set of values requested by the operation. In the ex-
ample of Figure 2, the applyXPATH operation requires two arguments: an XPath
expression and the file in which the information is stored (we suppose that up.xml
contains the user preferences).

So far, we support data collectors returning an integer, string, or boolean. These
intructions can be nested to filter (or compose) the data gathered from different sources.

Data analysis can be carried out by different data analyzers. The WS-CoL concrete
syntax can be translated into different abstract representations that correspond to dif-
ferent analysis engines. In this paper, we concentrate on a specific engine implemented
using xlinkit [12] and CLiX [13]. WS-CoL complies with the WS-Policy framework,
and assertions based on Ws-CoL can be included in a WS-Policy file.

WS-Policy for Service Monitoring 77

1. Policy attachment:

<wsp:PolicyAttachment xmlns:wsp="...">
<wsp:AppliesTo xmlns:wsal="...">

<wscol:MonitoredItems xmlns:wscol="...">
<wscol:MonitoredItem type="precondition"

path=’XPATH expression to WS-BPEL invoked activity’/>
</wscol:MonitoredItems>

</wsp:AppliesTo>
<wsp:PolicyReference

URI="http://www.bookshop.it/policies#BookShopPolicy/>
</wsp:PolicyAttachment>

2. Policy definition:

<wsp:Policy xml:base="http://www.bookshop.it/policies"
wsu:Id="BookShopPolicy"

xmlns:wsp="..."
xmlns:wsu="...">

<wsp:All xmlns:wsse="..."
xmlns:wscol="...">

<wsse:Confidentiality>
<wsse:Algorithm type="wsse:AlgSignature"

URI="http://www.w3.org/2000/09/xmlenc#3des-cbc"/>
</wsse:Confidentiality>
<wscol:Expression>

($ChargeRequest\amount) <=
\returnInt(WSDL_XPATH, applyXPATH,

’\\userpref\moneyCap’, up.xml)
</wscol:Expression>

</wsp:All>
</wsp:Policy>

Fig. 2. Ws-Policy example

Figure 2 shows a possible effective policy attachment3, where policy
BookShopPolicy is applied to all the subjects identified by the XPath expression in
the MonitoredItem tag. The type attribute specifies when the expressions included
in the policy must hold. More in details, the effective policy, which must be satisfied
when the credit card is about to be charged, is defined in the second part of the Fig-
ure: the BookShopPolicy states both functional and non-functional properties. In the
example, we use an assertion that complies with Ws-SecurityPolicy to specify that all
exchanged messages be encrypted using “3DES” as the encryption algorithm. More-
over, functional requirements impose that every time clients are ready to pay for their
books, the order cannot exceed the money cap. This last constraint is rendered in the
WS-CoL assertion included in the Expression tag: the amount of money of the cur-
rent purchase (ChargeRequest) must be less than or equal to the moneyCap of the
current user’s preferences (uP).

3 Namespaces are not included for the sake of readability.

78 L. Baresi, S. Guinea, and P. Plebani

Notice that the expression $ChangeRequest\amount retrieves the cost of the pur-
ceise from the corresponding WS-BPEL internal variable, while \returnInt
(WSDL XPATH, applyXPATH, ’\\userpref\moneyCap’, up.xml) retrieves the
maximum amount the user is willing to spend, from the preferences file named up.xml.

5 Monitoring Manager

The proposed monitoring component, called Monitoring Manager, is simple and exten-
sible in terms of the data analyzers it can use for verifying functional and non-functional
properties at run-time. Simplicity has been chosen over other guidelines, such as per-
formance, due to its prototypical nature. The Monitoring Manager is composed of four
principal components (see Figure 3): the Rules Manager, the Configuration Manager,
the External Monitors Manager and the Invoker.

The UML collaboration diagram of Figure 4 shows how such components interact
during the execution of a WS-BPEL process if the monitoring of pre-conditions is re-
quired. When BPEL2 produces the instrumented version of the process, it adds an initial
call to the manager (1) that sets up the monitoring activities by creating a specific con-
figuration in the Configuration Manager (2). This configuration contains all the policies
that are selected for the process.

Monitoring Manager

CLiX
Monitor
Plugin

Monitor
Plugin

Monitor
Plugin

External
Monitors
Manager

Configuration
Manager

Invoker

Rules
Manager

Monitor
Manager
Interface

Plugin Interface

Plugin Interface

Plugin Interface

XPath Data
Collector

SOAP Builder
Data

Collector

BPEL
2

CLiX Data
Analyzer

Fig. 3. Interaction with the Monitoring Manager

WS-Policy for Service Monitoring 79

WS-BPEL
Process

Data Collector

Web Service

Data AnalyzerInvoker

Rules
Manager

External
Monitors
Manager

Monitor Plug-
in

Configuration
Manager

1: initial setup

5: Invoke Data Collector

18: Invoke Web Service
19: return

8: return

13: Validate
pre-condition

6: Ask for relevant data

7: return

16: return

2: Initial setup

9: Tranform WS-Col Expression 10: Tranform Rule

11: return12: return

17: Invoke
Web Service 20: return

14: Invoke Monitor

15: return

21: return

3: Service invocation

4: Ask for pre-conditions

Fig. 4. Interactions among the main elements of the monitoring manager

After setup, the execution of the actual business logic commences. If the instru-
mented process needs to invoke a service that must be monitored, it invokes the Moni-
toring Manager in its place (3). The manager is sent the data that are to be analyzed and
the information required to invoke the Web service that the manager is wrapping. The
Rules Manager extracts the expressions associated with the service invocation from the
Configuration Manager. In Figure 2, an encryption policy and a functional pre-condition
are associated with the OnlineBank service invocation. This means that when the mon-
itoring of these properties is requested by the instrumented process, their appropriate
expressions are extracted from the Configuration Manager (4).

The pre-condition is a functional property that must be verified prior to constructing
the SOAP message that must be sent to the OnlineBank service. The encryption policy
is a non-functional property that must be verified after the SOAP message has been
constructed and prior to sending it to the OnlineBank service. If we consider return
messages, the approach works similarly.

When a policy has to be checked, the Rules Manager starts by confronting the policy’s
property with the global process execution priority. This is done to decide whether the
policy should be monitored or if the requested monitoring activity can be ignored. In
our example, we can imagine the process execution priority is “4” while the monitoring
rule’s priority is “5”. This means that the required monitoring activity cannot be ignored.

If a policy is to be monitored, the Rules Manager analyzes the expressions to see
if additional data must be obtained prior to effective analysis (5,8). If additional data

80 L. Baresi, S. Guinea, and P. Plebani

is needed (meaning a \returnString, \returnInt, etc. is present in the WS-CoL
expression), the Invoker is called to interact with the specified external data collectors
(6,7). Once all the data has been obtained, the Rules Manager asks the appropriate
external monitor plugin to translate the WS-CoL expression and the data into the for-
mats the external monitor (in this case the CLiX monitor) is capable of interpreting
(9,10,11,12). Once this translation is completed, the appropriate data analyzer is in-
voked (13,14,15,16) and the Rules Manager waits for a response. If the response is that
the property is valid, (this is the case in Figure 4) the Rules Manager proceeds by asking
the Invoker component to call the Web Service that would have been called originally
(17,18,19,20,21). If the data analyzer responds by saying that the property is not valid,
a standard exception is raised to the instrumented process which can then decide for
some recovery strategies4.

At this point the manager proceeds to the monitoring of the SOAP message that is
to be sent to the OnlineBank service, to see if it is encrypted as stated in the encryption
policy (see the policy example in Figure 2), in other words using “3DES”. Notice that
even for this policy the monitoring approach is the same as described before. In fact,
when the instrumented version of the WS-BPEL process is created, the encryption pol-
icy is translated into WS-CoL, to make it interpretable by the manager. This means that,
potentially, a generic WS-Policy assertion can be translated into a WS-CoL assertion in
order to express how the assertion can be monitored.

In particular, the policy is translated into two different WS-CoL expressions, one for
the outgoing message and one for the returning message. Both are sent to the manager
during the initial setup phase and stored in the Configuration Manager. If we consider
the WS-SecurityPolicy assertion included in our example:

<wsse:Confidentiality>
<wsse:Algorithm type="wsse:AlgSignature"

URI="http://www.w3.org/2000/09/xmlenc#3des-cbc"/>
</wsse:Confidentiality>

The corresponding WS-CoL expression for the outgoing message is:

<wscol:Expression>
\returnString(WSDL_XPATH, applyXPATH,

’\\Envelope\body\EncryptedData\EncryptionMethod\@Algorithm’,
\returnString(WSDL_SOAP_DC, getSOAP,

’BookShopPolicy’, ’Data’)
) == ’http://www.w3.org/2000/09/xmlenc#3des-cbc’;

</wscol:Expression>

In this expression, we suppose to have an XPath data collector (WSDL XPATH) and a
SOAP data collector (WSDL SOAP DC). The first retrieves data corresponding to XPath
expressions. The second generates the SOAP message that correspond to invocations of
external Web Services.

The WS-CoL expression uses two nested \returnStrings. The inner one, by us-
ing the SOAP data collector, asks to produce an encrypted SOAP message using the
encryption policy stated in the initial WS-Policy file and the data received from the

4 Recovery strategies are not part of this paper and are our future work.

WS-Policy for Service Monitoring 81

instrumented process. Amongst these data is the WSDL of the service that must be in-
voked with the encrypted message. This is needed for understanding the structure of
the SOAP message that has to be built. The outer \returnString, extracts a value
(whose location is specified using an XPath expression) contained in the header of the
just newly built SOAP message. In the meanwhile, the encrypted SOAP message, as
built by the SOAP data collector, is kept untouched in the Invoker, preventing it from
being modified. This is fundamental since it represents the actual message that will be
sent to OnlineBank, once its correct encryption is proven. The value extracted by the
XPath data collector is eventually confronted with “3DES” by the CLiX data analyzer.
If the message results to be encrypted correctly, the Invoker is instructed to forward
the message to the OnlineBank service. If the message is not encrypted correctly, the
system raises an exception that is passed to the instrumented process.

The return message received by OnlineBank must also be monitored for correct en-
cryption. Once the return message is received by the Invoker, it is copied and passed to
the XPath data collector that extracts the header element to confront it with “3DES”.
Once again, we use a WS-CoL expression containing a \returnString call to the
XPath data collector. The extracted values are then passed to the CLiX data analyzer.
If the message results to be correctly encrypted, it is passed to the SOAP data collector
for decryption, after which the result of the decryption is forwarded to the instrumented
process. If the message is not correctly encrypted, an exception is raised and passed to
the instrumented process.

Generally speaking, given a generic WS-Policy assertion to be monitored, if a data
source capable of identifying the effects of such an assertion exists, we can derive a
Ws-CoL expression. This expression instructs the monitoring manager to state if the
non-functional properties the user requires are satisfied.

6 Related Work

The research initiatives undertaken in the field of web service monitoring share the
common goal of discovering erroneous situations during the execution of services. They
differ, although, in a number of ways: degree of invasiveness, abstraction level at which
they work, reactiveness or pro-activeness, and nature of erroneous situations they are
capable of discovering.

For example, Spanoudakis and Mahbub [14] have developed a framework for mon-
itoring requirements of WS-BPEL-based service compositions. Their approach uses
event-calculus for specifying the requirements that must be monitored. Requirements
can be behavioral properties of the coordination process or assumptions about the
atomic or joint behavior of deployed services. The first can be extracted automatically
from the WS-BPEL specification of the process, while the latter must be specified by
the user. Events are then observed at run-time. They are stored in a database and the
run- time checking is done by an algorithm based on integrity constraint checking in
temporal-deductive databases.

Lazovik et al. [15] proposes another approach based on operational assertions and
actor assertions. The first can be used to express properties that must be true in one state
before passing to the next, to express an invariant property that must hold throughout all

82 L. Baresi, S. Guinea, and P. Plebani

the execution states, and to express properties on the evolution of process variables. The
second can be used to express a client request regarding the entire business process, all
the providers playing a certain role in the process execution, or a specific provider. The
system then plans a process, executes it, and monitors these assertions. This approach
shares with ours the fact of being assertion-based. Once the assertions are inserted, it
is completely automatic in its setup and monitoring. It lacks although the possibility of
dynamically modifying the degree of monitoring. It also lacks adoptability since it is
based on proprietary solutions.

A third approach, Cremona (Creation and monitoring of WS-Agreements)
project [16] is the only one which, so far, is based on WS-Policy, embedded in WS-
Agreement declarations, to express the non-functional requirements. WS-Agreement
[17] is a standardization effort of the Global Grid Forum that defines an agreement
protocol based on XML. This standard defines agreements for interfaces, security and
quality of service properties. Cremona provides a framework that simplifies the defini-
tion, the management and the run-time monitoring of the state of the agreements.

7 Conclusions and Future Work

Even if WSDL represents the standard way to define what a Web service does, many
efforts are now focusing on languages that can complete such a description by consider-
ing aspects that are not directly related to how a service should be invoked. WS-Policy,
and all the other languages included in the WS-Policy framework, represent one of the
most well-known attempts and, due to its flexibility, could be a candidate to become the
future standard. For these reasons, in this work, we decided to extend the WS-Policy
framework by proposing WS-CoL, as a domain-independent assertion language.

This paper is only a first proposal to embed monitoring directives into policies. The
first implementation of the Monitoring Manager and the experiments with the (com-
plete) example presented in this paper gave promising results, but the approach needs
further analysis and a wider set of case studies to fully assess its soundness. Rules driv-
ing the automatic translations from WS-Policy assertions to Ws-CoL expressions are
under development. All these activities are facilitated by the availability of our moni-
toring framework.

References

1. M. P. Papazoglou and G. Georgakopoulos. Service-oriented computing: Introduction. Com-
munication ACM, 46(10):24–28, 2003.

2. J. Schlimmer (ed.). Web Services Policy Framework (WS-Policy Framework). www.ibm.
com/developerworks/library/specification/ws-polfram/, September
2004.

3. A. Nadalin (ed.). Web Services Policy Assertions Language (WS-PolicyAssertions). www.
ibm.com/developerworks/library/ws-polas/, May 2003.

4. N. Mukhi, P. Plebani, T. Mikalsen, and I. Silva-Lepe. Supporting Policy-driven behaviors in
Web services: Experiences and Issues. In Proceedings of the Second International Confer-
ence on Service Oriented Computing (ICSOC2004), New York, NY, USA, 2004.

WS-Policy for Service Monitoring 83

5. P. Nolan. Understand WS-Policy processing. Explore Intersection, Merge, and Normal-
ization in WS-Policy http://www.ibm.com/developerworks/webservices/
library/ws-policy.html.

6. K. Verma, R. Akkiraju and R. Goodwin. Semantic Matching of Web Service
Policy. http://lsdis.cs.uga.edu/ kunal/publications/Semantic
Policy-SWDP-final.pdf.

7. C. Sharp (ed.). Web Services Policy Attachment (WS-PolicyAttachment).
www-128.ibm.com/developerworks/library/specification/
ws-polatt/, September 2004.

8. N. Delgado, A. Q. Gates and S. Roach. A Taxonomy and Catalog of Runtime Software-Fault
Monitoring Tools . IEEE Transactions on software Engineering, pages 859-872, December,
2004.

9. D. C. Luckham. Programming with Specifications: An Introduction to Anna, A Language
for Specifying Ada Programs. Texts and Monographs in Computer Science, Oct 1990.

10. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary Design of JML: A Behavioral Interface
Specification Language for Java. Department of Computer Science, Iowa State University,
TR 98-06-rev27, April, 2005.

11. L. Baresi, C. Ghezzi and S. Guinea. Smart Monitors for Composed Services. In Proceedings
of the 2nd International Conference on Service Oriented Computing, 2004.

12. XlinkIt: A Consistency Checking and Smart Link Generation Service. ACM Transactions
on Software Engineering and Methodology, pages 151–185, May 2002.

13. CLiX: Constraint Language in XML. www.clixml.org/clix/1.0/.
14. K. Mahbub and G. Spanoudakis. A Framework for Requirements Monitoring of Service

Based Systems. In Proceedings of the 2nd International Conference on Service Oriented
Computing, 2004.

15. A. Lazovik, M. Aiello and M. Papazoglou. Associating Assertions with Business Processes
and Monitoring their Execution. In Proceedings of the 2nd International Conference on
Service Oriented Computing, 2004.

16. H. Ludwig, A. Dan, R. Kearney. Cremona: an architecture and library for creation and
monitoring of WS-Agreements. In Proceedings of the Second International Conference on
Service Oriented Computing (ICSOC2004), New York, NY, USA, 2004.

17. Web Services Agreement Specification (WS-Agreement), 2005. ws.apache.org/
wsif/.

SENECA – Simulation of Algorithms for the
Selection of Web Services for Compositions

Michael C. Jaeger and Gregor Rojec-Goldmann

TU Berlin, Institute of Telecommunication Systems,
Sek. FR 6-10, Franklinstrasse 28/29, D-10587 Berlin, Germany

{mcj, gr}@cs.tu-berlin.de

Abstract. This paper discusses a combinatorial problem about the se-
lection of candidates for Web service compositions. The problem occurs
if we assume that a discovery process has identified several candidates
for each task of a composition and if the selection must consider multi-
ple criteria. We anticipate to use quality-of-service (QoS) categories as
selection criteria and thus the problem is about optimising the QoS of
compositions at their planning-phase. This paper will explain this prob-
lem and propose different heuristics as possible solutions. Based on a
software simulation a performance evaluation of these heuristics is given.

1 Introduction

The Web services proposal represents a technology to realise a distributed service
architecture. The basic setup involves a service provider who offers services and a
service requester who invokes the service. The requester finds the desired service
by using a discovery service. The discovery service processes the requirements
from a requester and identifies the suitable available services. Apart from a
functional description, e.g. about the interface, the requester can also define
non-functional characteristics such as the quality of service (QoS) to specify
his requirements. In the Web service domain, an open initiative hosted by the
OASIS group proposes a specification for a discovery service called Universal
Description, Discovery and Integration, in short UDDI [17]. The UDDI is a
part of the Web Services Architecture promoted by the W3C [2]. For UDDI,
additional proposals exist that processes the QoS as an additional criteria for
service discovery such as the work of Ran [15] or Benatallah et al. [1].

Individual Web services can be arranged to form a new, composed service.
A software developer can describe such a composition by using flow languages
which exist already for this purpose. Then, execution environments can process
this description to execute the composition. Before, a discovery service must
identify suitable service candidates for each task of the composition. Based on
the result of the discovery, the optimal candidate for each task must be selected.
If the selection must consider more than one criteria, e.g. two QoS categories such
as execution time and cost, then a combinatorial problem arises. In our discus-
sion, we focus entirely on the selection and presume that a preceding discovery

C. Bussler and M.-C. Shan (Eds.): TES 2005, LNCS 3811, pp. 84–97, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

SENECA – Simulation of Algorithms for the Selection of Web Services 85

has already identified suitable services. We explain the combinatorial problem
of the selection and propose possible solutions. In the following subsections, we
give an overview to the QoS of Web services compositions. Then, in Section 2,
we explain the problem and introduce possible solutions. In Section 3 we present
their evaluation along with a statistical analysis. At the end, the related work is
presented and our conclusions are given.

1.1 QoS Categories

We consider the QoS categories as selection criteria. A set of QoS categories has
been already introduced for the use with Web services by Zeng et al. [22], or
Menasce [12]. From these categories we have chosen the following four to give
a more demonstrative discussion and examples. We separate QoS categories by
either showing an increasing or a decreasing direction. An increasing direction
means that a higher value indicates a better quality, for decreasing categories
vice versa. Please note that our methods and algorithms will work also with
other and more QoS categories. The considered QoS categories are:

Max. Execution Time (Decreasing). The execution time defines the time
to execute the service. We presume that only the execution time values of indi-
vidual services will result in the overall execution time of the composition.

Cost (Decreasing). The cost defines generally the amount of resources needed
to use a service.

Reputation (Increasing). The concept of a reputation is about a ranking
given by users of the service. The idea is similar to ebay.com or amazon.com
where clients rank the behaviour of other clients [22]. The reputation is defined
as the average of the individual ranks of users.

Availability (Increasing). The availability denotes the probability that the
execution of the service performs successfully.

1.2 QoS Aggregation

In order to select candidates for tasks in a composition based on QoS, a method
is necessary to aggregate the QoS of individual services for the whole composi-
tion. In a preceding paper, we have introduced such an aggregation method [9].
The idea of this approach is to map the structure of the composition to fixed
structural elements. Then, we perform defined aggregation rules for each struc-
tural element and each category. We have derived these structural elements from
the workflow patterns introduced by van der Aalst et al. [19]. Workflow patterns
describe the functional and structural characteristics of workflow management
systems. We have chosen the workflow patterns because van der Aalst has shown
that their structural part also applies to commonly known description languages
for compositions [18]. Thus, we can presume that our elements cover these de-
scriptions as well. Since the scope of this paper does not allow to explain which

86 M.C. Jaeger and G. Rojec-Goldmann

of the workflow patterns are considered as a composition element, we would like
to refer the reader to our preceding paper [9]. From this analysis, we defined the
following composition patterns:

Sequence of service executions. A sequence can either prescribe a specific
order in which the services have to be executed or the services can be executed
in an arbitrary order.

Loop. The execution of a service or a composition of services is repeated for a
certain amount of times.

XOR-split followed by an XOR-join. In a parallel arrangement only one
task is started. Thus, the synchronising operation only waits for the started
task.

AND-split followed by an AND-join. From a parallel arrangement all
tasks are started, and all tasks are required to finish for synchronisation.

AND-split followed by a m-out-of-n-join. From a parallel arrangement all
n tasks is started, but less m < n tasks are required to finish for synchronisation.

OR-split followed by OR-join. In a parallel arrangement a subset of the
available tasks is started, and all of the started tasks are required to finish
for synchronisation. For example, from four available services, the run-time en-
vironment starts always three of them which must also finish successfully.

OR-split followed by a m-out-of-n-join. In a parallel arrangement a subset
n of all tasks is started, and m < n tasks are required to finish for synchronisa-
tion.

Figure 1 shows the pattern-wise aggregation of a simple composition exam-
ple. To aggregate the maximum execution time, an algorithm would start to
determine the larger value in the parallel sub-arrangement. Then, the sum of
the sequential arrangement including the aggregated value of the parallel ar-
rangement is calculated. This approach enables us to view the aggregation in
a pattern-perspective, i.e. not the whole composition is relevant at once. We
have described the aggregation rules for different QoS categories in detail and
compared them to other approaches in our preceding paper [9].

Task 2

Task 3

Task 6

Task 2

Task 3

Aggregated
Tasks 4 & 5

Task 6

Aggregated
Tasks 1 - 6

Parallel

AND-Split

Parallel

AND-Join

Task 5Task 4

Task 1

Task 1

Fig. 1. Collapsing the Graph

...

...

Parallel

AND-split

Parallel

AND-Join

Task 5Task 4

Candidate 1:

exec time: 160

cost: 8

Candidate 2:

exec time: 250

cost: 6

Candidate 3:

exec time: 210

cost: 5

Candidate 1:

exec time: 30

cost: 6

Candidate 2:

exec time: 70

cost: 5

Candidate 3:

exec time: 85

cost: 4

Fig. 2. Selection Example

SENECA – Simulation of Algorithms for the Selection of Web Services 87

2 The Selection of Services

A selection tries to identify the best assignment of service candidates for the tasks
in the composition. We propose to use QoS categories as selection criteria. If
just one criteria is relevant, the selection is trivial and for each task the referring
service candidate offering the best value is chosen. If more than one category is
relevant, an algorithm must evaluate all combinations from a global perspective.
This need has been discussed already by Zeng et al. [22]. Thus, we give only a
small example: consider the parallel arrangement of the two tasks 4 and 5 in
Figure 2: let the optimisation goal be to form the quickest composition with the
lowest cost. Also, choosing a quicker service is usually more costly meaning that
cost and execution time form a trade-off couple. In our example, the quickest
candidate for task 4 executes longer than any candidate for task 5. The optimal
assignment for the task 5 is the candidate 3. A selection from a local perspective
would have identified candidate 1 for task 5 and thus would have resulted in a
higher cost.

The problem is that an evaluation of all assignments results in an exponen-
tially rising computation effort regarding the number of candidates: if the number
of candidates increases by one, then the number of combinations to evaluate is
doubled. Thus, we regard a straightforward evaluation of all combinations as un-
feasible for a large number of candidates. Our intention is to apply and evaluate
different heuristics for this problem which show a feasible effort.

2.1 Comparing the QoS

All algorithms must compare either the QoS of individual candidates or the
aggregated QoS of a composition. For this comparison, we apply the Simple Ad-
ditive Weighting (SAW) method, which was introduced in the context of Multiple
Criteria Decision Making (MCDM) [7]. For applying the SAW, we refer to a can-
didate or aggregated set of QoS values with index i and individual QoS values
syi, where y represents a QoS category. Then for each value syi is replaced by
the normalised value nyi:

nyi =

⎧⎨
⎩

max{sy1,...,syi}−syi

max{sy1,...,syi}−min{sy1,...,syi} for decreasing categories

syi−min{sy1,...,syi}
max{sy1,...,syi}−min{sy1,...,syi} for increasing categories

Then, we apply a score ci to each candidate which aggregates the normalised
values. The score is defined by

ci =
1
p

p∑
y=1

wynyi

where index p represents the number of considered QoS categories. The weight
wy is applied to the QoS categories by the user’s preference. The result of this
procedure is a score for each Web service candidate, which can be seen as the
value of an item.

88 M.C. Jaeger and G. Rojec-Goldmann

2.2 Greedy Selection

A greedy selection represents a simple heuristic approach. This approach selects
for each task the candidate that offers the highest score compared to the other
candidates. With this approach, it is not possible to consider a constraint which
is applied to the whole composition.

2.3 Discarding Subsets

We call our backtracking-based algorithm for the selection Discarding Subsets.
It uses a search tree which consists of nodes each representing a possible pair
of a candidate and a task. Each level of the tree holds pairs of a particular
task only, resulting in a tree having the same number of levels as tasks. Each
possible assignment for the composition is represented by a path starting from
the root and ending at a leaf. The advantage of this algorithm compared to a
straight global selection lies in the idea to cut subtrees representing unfavorable
combinations to save computation efforts.

Such an approach normally identifies the optimal solution and thus cannot
be regarded as an heuristic. However, we regard this as an heuristic, because we
establish a cutting rule based on an estimation. Considering the execution time,
the cutting rule is clear: if a complete combination has already been determined
that shows a lower execution time as the partial combination processed at some
moment, the algorithm cuts the subtree. Each additional candidate would worsen
execution time. However, for categories where the aggregation calculates the
arithmetic mean, a rule cannot determine whether the QoS gets worse or better.
In our discussion, we consider the reputation as a QoS category which represents
this case. Applied to the selection problem in our configuration, the discarding
subsets algorithm considers two cutting rules:

1. A partially evaluated combination already violates a constraint. Thus, the
algorithm cuts the subtree.

2. The algorithm compares the aggregated QoS of the partial combination with
the aggregated QoS of already complete combinations. However, for this com-
parison the QoS categories involving a mean-based aggregation are ignored.
This strategy does not find the optimal result necessarily, because the cutting
rule represents an estimation.

2.4 Bottom-Up Approximation

The selection problem for the composition of Web services shows similarities to
the Resource Constrained Project Scheduling Problem (RCSPS) which we have
mentioned in a previous publication [8]. An RCPSP occurs in a typical project
planning situation: a project is divided into individual tasks. Then, each task
must be assigned to the available workers in order to complete the whole project.
The problem occurs if the assignment must consider certain optimization or con-
straint criteria such as finishing the project as quickly as possible. Considering

SENECA – Simulation of Algorithms for the Selection of Web Services 89

the similarity to the selection problem, an application of solution approaches
for RCPSPs sounds feasible. However, not every solution for the RCPSP can be
applied to the selection, because RCPSPs cover the execution order of tasks dif-
ferently: for web service compositions the order is in most cases pre-defined in a
flow description, while the tasks of a project are subject to precedence relations,
which may allow to push a particular task for- or backwards in order to optimise
the utilisation of resources. It turned out that several solutions RCPSPs consider
a precedence model which does not allow the application to the selection prob-
lem. Nevertheless, we have identified a heuristic covering a RCPSP introduced
by Yang et al. which can be used for the selection [20]. The heuristic applied to
the selection would perform as follows:

1. The candidates are sorted by the QoS value involving the QoS category
relevant for the constraint only.

2. For each task, the algorithm assigns the candidate that offers the best
constraint-relevant QoS category. If a solution exists that meets the con-
straint, it is found with this step.

3. As the next step, the algorithm replaces the firstly assigned candidates by the
candidate with the next better QoS score which is determined by applying
the SAW method.

4. The new combination is tested for whether the constraint is still kept. If the
constraint is still kept, the algorithm continues by looping back to step 3.
The algorithm stops, if at one time for each task no additional candidate
is found that lets the composition meeting the constraint and increases the
overall QoS.

2.5 Pattern-Based Selection

In a preceding paper we have introduced another heuristic [5], which directly cov-
ers the example of tasks 4 and 5 explained in section 2. We regret that we cannot go
into much detail about the pattern-wise selection due to spatial limitations. Thus,
we refer to the mentioned publication for more information. In very brief words,
the algorithm determines the best assignment considering each composition pat-
tern in isolation. The algorithm takes advantage of an existing representation of
the composition by using the composition patterns. It performs four steps:

1. The algorithm walks recursively into the structure and identifies pattern
elements that do not contain any sub-patterns.

2. For all tasks within such an element, all sets of candidate assignments are
evaluated. The combination that delivers the best score is chosen.

3. If the optimal solution for a particular pattern is determined, the algorithm
walks one level upwards to evaluate the assignment within the new pattern.
The aggregated QoS of contained sub-patterns is taken as a fixed value.

4. The pattern wise optimisation and aggregation is performed until the whole
composition is covered and one aggregated QoS is returned.

Since this algorithm operates on each pattern element, this approach cannot
meet global constraints.

90 M.C. Jaeger and G. Rojec-Goldmann

3 Evaluation

We have compared the four proposed heuristics in a software-based evaluation
that we call SENECA. To the existing four we have also added two simple se-
lection methods to show the optimal result and the result without optimization.
The two are: a) the global selection and the b) constraint selection. The global
selection evaluates all possible combinations and then determines the best assign-
ment possible. This algorithm shows also the worst computation effort. By the
second method b), the algorithm shows a greedy behaviour: for each individual
task, it chooses the candidate offering the best QoS determined by a comparison
using the SAW method. To determine an assignment for a task, other assign-
ments the greedy algorithm ignores other assignments and thus the algorithm
does not necessarily identify the optimal solution.

In summary, our evaluation covers the following selection methods:

Algorithm (Respects Constraint)

Constraint Selection (yes) Bottom-Up Approach (yes)
Global Selection (no) Discarding Subsets (yes)
Greedy Selection (no) Pattern-based Selection (no)

The evaluation software generates arbitrary test composition structures by
randomly arranging the desired number of tasks in composition pattern ele-
ments. Since the composition patterns consist of two sequential and five par-
allel patterns, the generated structures will statistically contain more parallel
arrangements. The software performs the following steps:

1. Creation of the Composition Structure. To build up the composit-
ion structure, the software determines a root pattern chosen from the seven
composition elements with uniform probability. Within this root, the soft-
ware chooses with equal probability to either place a task into it or to choose
another composition pattern as a substructure. This ends until the gen-
eration has spent the predefined number of tasks. Since the composition
patterns consist of two sequential and five parallel patterns, the generated
structures will statistically contain more parallel arrangements.

To our knowledge, the literature does not provide a dedicated evalua-
tion about how many tasks a composition usually consists of. To give an
idea about the typical number of services used in the industry, a Gartner
study presents the average numbers of (e-)services in companies and enter-
prises [13]. According to this study small companies deploy about 25 ser-
vices on average while very large enterprises have a total amount of more
than 1000 services. In such very large enterprises, more than 100 clients
accessing these services on a regular basis which results in more than one
million service executions per day. From these numbers, an estimation is
possible that on average a client accesses 10 different services giving on av-
erage. This would represent a guess about potential composition sizes used
in these environments. The sheer number of 1000 services that must be

SENECA – Simulation of Algorithms for the Selection of Web Services 91

Table 1. Availability Rates and Resulting Downtimes by Kenyon [10, p. 411]

System Class Avalability Yearly Downtime Daily Downtime

Unmanaged 90.00000% 876.00 hours 2.40 hours
Managed 99.00000% 87.60 hours 14..40 mins
Well-Managed 99.90000% 8.76 hours 1.44 mins
Fault-Tolerant 99.99000% 52.56 mins 8.64 secs
High-Availability 99.99900% 5.26 mins 863.99 msecs
...

...
...

...
Ultra-Availability 99.99999% 3.15 secs 8.64 msecs

considered by a discovery process. However, assumptions about how many
services candidates will result for each task cannot be made (except than
probably less than 1000).

Besides, there is no known study or evaluation about existing SOA en-
vironments and about how many services a composition usually combines.
Apart from the Gartner study, such numbers can be guessed from other
evaluation work, such as the evaluation of workflow management facilities
by Heinis et al. [6] or Cranford et al. [3]. In their work, the underlying
number of tasks in workflows varies between 10 and 25.

2. Generation of QoS Values. The software generates candidate services
with random QoS values. Regarding the execution time, Tosic et al. have
introduced an infrastructure to evaluate the provision of policy-aware Web
services [16]. In their work, they have performed experiments to execute
Web services while providing an adaptive solution to cover dynamically
changes in the given QoS. Their experiments showed that a setup of Web
services in a local network resulted in a response time of about 150 mil-
liseconds. Thus, for this work a value of 150 milliseconds is regarded as
the quickest service execution possible. Gillmann et al. have evaluated
the typical duration for the average turnaround times of activities in a
workflow [4]. The workflow scenario represents a real-world application
of service compositions. According to their evaluation, automatic (non-
interactive) services ususally take about 2 seconds to execute.

Regarding the availability of services, the work of Gillmann et al. con-
siders a typical downtime in the area of 20 minutes each day in their
evaluation.1 This would result in an availability of 0, 985% [4]. Kenyon
presents a very detailed discussion about typical availability rates [10, p.
411]. Table 1 summarises typical availability rates.

Regarding the cost and the reputation, an evaluation of existing work
would not result in any benefit for this simulation: cost and reputation are
individually set and up to specific definitions. For example, the cost de-
pends on the used currency and could be always transferred into another

1 A strongly simplified assumption based on their failure model, which is, however,
regarded as sufficient for the use in this work.

92 M.C. Jaeger and G. Rojec-Goldmann

measure. For the reputation any scale used for setting scores can be de-
fined. Based on these considerations, the software generates a QoS value –
with uniform distribution for execution time, reputation and availability
– from the following intervals:

QoS Category, Value Range

Execution Time [150..2000]
Cost [0..1000]
Reputation [1..100]
Availability [0, 9750..0, 9999]

For the execution time, the actual value for each candidate is determined
by adding a randomly determined percentage of between 0 and 100. To
form a trade-off couple between execution time and cost, the two are set
as follows: the percentage a added to the optimal execution time is taken
to calculate the percentage b added to the optimal cost with a + b = 100.
Thus, the more optimal the execution time is, the worse will be the cost
and vice versa.

3. Setting the Constraint. After the composition and candidates have
been determined, a constraint is set by running the constraint selection
first. In our simulations, the cost represents the relevant constraint cate-
gory. Thus the constraint selection is performed considering the cost. The
aggregated cost for the composition is increased by 20% and then taken
as the constraint that has to be met by the other selection methods. The
resulting QoS of all selection methods are compared with the global selec-
tion using the SAW approach. In addition to the resulting QoS also the
execution time for each selection method is captured.

4. Performing the Selection Algorithms. Having the composition and
the candidates with randomly generated QoS attributes, the simulation
software performs all selection methods on this setup. For each run, the
software captures the resulting aggregated QoS and also the computation
time in milliseconds. In addition, the software compares the aggregated
QoS of the selection methods resulting by the SAW-based comparison.

We have evaluated the algorithms with arbitrary compositions that contain
a different number of tasks (from 4 to 12) but a fixed number of candidates for
each task (5). Each evaluation case with a particular number of tasks has been
repeated 100 times with each time a new random composition structures and
new, randomly generated candidates.

4 Simulation Results

The results are shown in Figures 3 and 4. In addition, Table 2 shows the results
from a statistical analysis. Figure 3 shows the average resulting aggregated QoS

SENECA – Simulation of Algorithms for the Selection of Web Services 93

 0.8

 0.85

 0.9

 0.95

 1

 4 5 6 7 8 9 10 11 12

qo
s

ra
tio

number of tasks

Constraint
Global

Greedy
Bottomup

Discarding
Pattern

Fig. 3. Relative QoS to Global

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 4 5 6 7 8 9 10 11 12

tim
e

ra
tio

number of tasks

Constraint
Global

Greedy
Bottomup

Discarding
Pattern

Fig. 4. Computation Times (some of the values remain below 1)

94 M.C. Jaeger and G. Rojec-Goldmann

Table 2. Relative QoS and Computation Times for Setup with 12 Tasks

Method Average Standard % % % 95%-Conf.
Mean x Deviation s in 1s in 2s in 3s Interval

Overall QoS Relative to Global
Constraint 0.81961 0.05726 70 95 99 ±0, 01122
Global 1.0 0.0 100 0 0 ±0, 00000
Greedy 0.95539 0.04719 90 96 96 ±0, 00924
Bottom-Up 0.84705 0.05171 66 96 100 ±0, 01013
Discarding Subs. 0.96117 0.04635 87 95 98 ±0, 00908
Pattern 0.97332 0.03590 89 97 98 ±0, 00703

Computation Times (in Milliseconds)
Constraint 1 0 100 100 100 ±0
Global 3619819 786631 72 95 99 ±154.179, 676
Greedy 1 0 100 100 100 ±0
Bottom-Up 1 5 92 92 95 ±0, 98
Discarding Subs. 452854 741794 89 94 96 ±0, 00703
Pattern 16061 82974 97 99 99 [−16060; +16262]

of the compositions performing the selection methods relative to the global se-
lection. For example, a QoS ratio of 0, 80 means that this selection method gains
on average 80% of the best QoS possible. Figure 4 shows the average execution
times of the different selection methods for compositions with increasing num-
ber of tasks. Please note that in both figures the discrete results are connected
with interpolated lines for better visualisation only. Table 2 lists the arithmetic
mean and the standard deviation s based on the 100 samples taken. Based on
the standard deviation, the table also shows how many percent of the samples
are within one, two or three standard deviations around the mean.

4.1 Analysis

From the results in Table 2 we can guess that the resulting aggregated QoS
ranges around the mean value. Thus, we can exclude a split performance in the
way that they either perform very well or very badly. Furthermore, we can derive
the following observations:

Constraint. This method represents the lower limit regarding the resulting
QoS. It shows that theoretically the optimal solution increases the given setup
by roughly 25%.

Global. The global selection results in the optimal overall QoS while ignoring
the constraint. It shows exponentially rising computation effort with a larger
number of candidates and thus cannot be regarded as a feasible solution.

Greedy. The greedy selection shows that about 95% of the samples (assuming
an error rate of 5% in our simulation) result in a QoS at least better that about
86% of the optimal QoS. We see also that the computational effort is negligible.

SENECA – Simulation of Algorithms for the Selection of Web Services 95

However, it cannot meet any given constraints on purpose. Considering that
about 80% of the samples result within one standard deviation, we can conclude
that the greedy selection results in around 95% of the optimal Quality.

Bottom-up. The Bottom-up selection results in the second worse QoS com-
pared to the other heuristics. However, it meets the constraint and also shows
a negligible computational effort.

Discarding. The selection by discarding subsets results in the best QoS possi-
ble while still meeting the constraint. The measurements show that 95% of the
samples result in about 87% of the optimal QoS. Considering the result from
the constraint selection, this method increases on average the aggregated QoS
by 15%. Its computational effort is roughly one eighth of the global selection,
however it raises still exponentially.

Pattern. The pattern based selection shows the best resulting QoS from all
heuristic approaches. It also shows the lowest deviation of the resulting QoS.
We regard the computational effort as reasonable, thus it can be considered
as an alternative compared to the greedy selection. This method seems to de-
pend strongly on the given composition structure, because it shows the largest
deviation of execution times.

5 Related Work

The work of Puschner and Schedel about calculating the execution time for
software architectures represents our foundation for the aggregation of QoS in
Web service compositions [14]. They have defined calculation rules for structural
patterns as found in software executions. Since our composition model plays in
the field of Web service compositions, we have adopted this principle and build
our patterns onto the workflow patterns by van der Aalst et al. [19].

Several authors have also discussed which QoS categories might be consid-
ered in Web service compositions [12] [22]. Their contribution has been taken
up to determine the relevant categories for our work. Using QoS statements as
the main criteria for the selection of Web services has been discussed by dif-
ferent works already [1] [15]. Zeng et al. [22] already discussed the selection of
candidates as a part of a framework for Web service compositions in general
where our contribution about comparing different heuristics for the selection
problem would represent a suitable supplement. Apart from the selection, Zeng
et al. propose different aggregation mechanisms for each of their considered QoS
categories. Also, there are some more contributions about selection algorithms,
such as the work of Lee [11] or Yu et al. [21], in which the selection of services
is compared to a variant of the knapsack problem. We think that because of
its uniform structure, the pattern-wise aggregation results in lower efforts for
the implementation and the computation of the aggregation while being more
independent from particular QoS categories.

96 M.C. Jaeger and G. Rojec-Goldmann

6 Conclusions

We have discussed different algorithms for performing the selection of candidates
to optimise the aggregated QoS of a composition. Considering the algorithms,
the selected QoS categories can be extended depending on what is considered for
a specific application case. The intention of our work is to focus on the selection
algorithms independent from particular QoS categories.

For the optimisation without the need to meet a constraint, the pattern-
based selection reaches almost the level of the best possible QoS with acceptable
computational effort. If a slight decrease of the overall QoS is tolerable (up to
approximately 15% percent of the optimal solution by our setup), the greedy
selection delivers acceptable results with negligible efforts. For the optimisation
with meeting a global constraint, the bottom-up approximation results in an
overall QoS about 10% worse than by using the discarding subsets approach while
showing negligible computational efforts with growing number of candidates.

The results show that for a selection in a time-critical scenario, heuristics
can be successfully applied with a low decrease of the aggregated QoS. For
future research in this direction possible test cases could operate on a fixed
composition structure with an increasing number of candidates to evaluate the
different algorithms with specific arrangements. We also plan to evaluate how
the performance of the heuristics depend on the variance of the given QoS values
of the individual candidates.

References

1. Boualem Benatallah, Marlon Dumas, Marie-Christine Fauvet, and Fethi A. Rabhi.
Towards Patterns of Web Services Composition. Technical Report UNSW-CSE-
TR-0111, University of New South Wales, 2001.

2. David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion,
Chris Ferris, and David Orchard. Web Services Architecture. http://www.w3c.org/
TR/ws-arch/, February 2004.

3. Jonathan Cranford, Ravi Mukkamala, and Vijayalakshmi Atluri. Modeling and
evaluation of distributed workflow algorithms. In Proceedings of the World Mul-
ticonference on Systemics, Cybernetics and Informatics: Information Systems De-
velopment, pages 183–188, Orlando, Florida, USA, July 2001. IIIS.

4. Michael Gillmann, Gerhard Weikum, and Wolfgang Wonner. Workflow Manage-
ment with Service Quality Guarantees. In Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, pages 228–239, Madison, Wis-
consin, USA, June 2002. ACM Press.

5. Roy Grønmo and Michael C. Jaeger. Model-Driven Methodology for Build-
ing QoS-Optimised Web Service Compositions. In Proceedings of the 5th IFIP
International Conference on Distributed Applications and Interoperable Systems
(DAIS’05), pages 68–82, Athens, Greece, May 2005. Springer Press.

6. Thomas Heinis, Cesare Pautasso, and Gustavo Alonso. Design and evaluation of an
autonomic workflow engine. In Proceedings of the Second International Conference
on Autonomic Computing (ICAC’05), pages 27–38, Seattle, Washington, USA,
June 2005. IEEE Press.

SENECA – Simulation of Algorithms for the Selection of Web Services 97

7. Ching-Lai Hwang and K. Paul Yoon, editors. Multiple Attribute Decision Mak-
ing: Methods and Applications, volume 186 of Lecture Notes in Economics and
Mathematical Systems. Springer-Verlag, March 1981.

8. Michael C. Jaeger, Gero Mühl, and Sebastian Golze. QoS-aware Composition of
Web Services: A Look at Selection Algorithms. In Proceedings of the 3rd Inter-
national Conference on Web Services (ICWS 2005), Orlando, Florida, USA, July
2005.

9. Michael C. Jaeger, Gregor Rojec-Goldmann, and Gero Mühl. QoS Aggregation
for Service Composition using Workflow Patterns. In Proceedings of the 8th Inter-
national Enterprise Distributed Object Computing Conference (EDOC’04), pages
149–159, Monterey, California, September 2004. IEEE Press.

10. Tony Kenyon. Data Networks: Routing, Seurity, and Performance Optimization.
Digital Press, 1st edition edition, June 15th 2002.

11. Juhnyoung Lee. Matching Algorithms for Composing Business Process Solu-
tions with Web Services. In Proceedings of the 4th International Conference on
E-Commerce and Web Technologies (ECWEB 03), pages 393–402, Prague, CZ,
October 2003. Springer-Verlag Heidelberg.

12. Daniel A. Menasce. QoS Issues in Web Services. In IEEE Internet Computing,
pages 72–75. IEEE Press, November-December 2002.

13. Massimo Pezzini. SOA Beyond Hype and Disillusionment – A Strategic Perspec-
tive. Key Note given at the SOA Days 2005 Technology Conference, September
2005.

14. Peter Puschner and Anton Schedl. Computing Maximum Task Execution Times -
A Graph-Based Approach. Journal of Real-Time Systems, 13(1):67–91, July 1997.

15. Shuping Ran. A model for web services discovery with QoS. SIGecom Exch.,
4(1):1–10, 2003.

16. Vladimir Tosic, Wei Ma, Bernard Pagurek, and Babak Esfandiari. Web service
offerings infrastructure (wsoi) – a management infrastructure for xml web services.
In Proceedings of the IEEE/IFIP Network Operations and Management Symposium
(NOMS’04), pages 817–830, Seoul, South Korea, April 2004. IEEE Press.

17. UDDI Spec Technical Committee. UDDI Version 3.0.1. http://uddi.org/pubs/
uddi-v3.0.1-20031014.pdf, 2003.

18. Wil M.P. van der Aalst. Don’t go with the flow: Web services composition standards
exposed. Jan/Feb 2003 Issue of IEEE Intelligent Systems, pages 72–76, January
2003.

19. Wil M.P. van der Aalst and Arthur H.M. ter Hofstede and B. Kiepuszewski and
A.P. Barros. Workflow Patterns. Distributed and Parallel Databases 14(3), pages
5–51, 2003.

20. Bibo Yang, Joseph Geunes, and William J. O’Brien. Resource Constrained Project
Scheduling; Past Work and New Directions. Technical Report Research Report
2001-6, Department of Industrial and Systems Engineering, University of Florida,
2001.

21. Tao Yu and Kwei-Jay Lin. Service selection algorithms for web services with end-
to-end qos constraints. In Proceedings of the 2005 IEEE International Conference
on e-Technology, e-Commerce and e-Service (EEE’05), pages 129–136, Hong Kong,
China, March 2005. IEEE Press.

22. Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu, Marlon Dumas, Jayant
Kalagnanam, and Henry Chang. QoS-Aware Middleware for Web Services Com-
position. IEEE Transactions on Software Transactions, 30(5):311–327, May 2004.

C. Bussler and M.-C. Shan (Eds.): TES 2005, LNCS 3811, pp. 98 – 112, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Monitoring for Hierarchical Web Services
Compositions∗

Debmalya Biswas and Krishnamurthy Vidyasankar

Dept. of Computer Science, Memorial University of Newfoundland,
St. John’s, NL, Canada A1B 3X5

{debmalya, vidya}@cs.mun.ca

Abstract. The most promising feature of the Web services platform is its ability
to form new services by combining the capabilities of already existing services,
i.e., its composability. The existing services may themselves be composed of
other services, leading to a hierarchical composition. In this work, we focus on
the monitoring aspect for hierarchical Web services compositions. We are pri-
marily interested in capturing the state of a hierarchical composition at any
given point of time (snapshot). We discuss in detail how some of the snapshot
algorithms proposed in literature can be extended in a Web services context.
Snapshots usually reflect a state of the system which “might have occurred”.
Towards this end, we show how we can acquire a state that “actually occurred”
from such snapshots. Finally, we discuss the different types of execution related
queries and how we can answer them using the captured snapshots.

1 Introduction

Industry and researchers acknowledge Web services as being at the heart of next gen-
eration distributed systems. The most promising aspect of the Web services platform
is the composability aspect, i.e., its ability to form new services by combining the ca-
pabilities of already existing services. Basically, there are two approaches to compos-
ing a service: dynamic and static. In the dynamic approach, given a complex user re-
quest, the system comes up with a plan to fulfill the request depending on the
capabilities of available Web services at run-time. In the static approach, given a set
of Web services, composite services are defined manually at design-time combining
their capabilities. In this paper, we consider a mix of the two approaches where the
composite services are defined statically but the binding with providers is performed
at run-time depending on the user request. The above approach is typical of a group of
organizations collaborating to provide recurring, general services usually requested by
users. Thus, we assume that the organizations (providers) agree on some of the com-
positional aspects such as the ontology model used to describe their services, log syn-
tax, underlying state transition model, etc.

Monitoring is an inherent requirement of any distributed system. The need for a
monitoring mechanism is even more critical for Web services compositions because

∗ This research is supported in part by the Natural Sciences and Engineering Research Council of

Canada Discovery Grant 3182.

 Monitoring for Hierarchical Web Services Compositions 99

of their complexity and long running nature. OWL-S states the need for execution
monitoring as “the ability to find out where in the process the request is and whether
any unanticipated glitches have appeared”. In this work, we only consider the first
part, i.e., providing information about the current state of the execution. Monitoring
Web services compositions, similar to distributed systems, is difficult because of the
following reasons:

− No global observer: Due to their distributed nature, we cannot assume the exis-
tence of an entity having visibility over the entire composition. In fact, due to their
privacy and autonomy requirements, even the composite service provider may not
have visibility over the internal processing of its component service providers.

− Non-determinism: Web services allow parallel composition of processes. Also,
Web services usually depend on external factors for their execution. As such, it
may not be possible to predict their behavior before the actual execution. For ex-
ample, whether a flight booking will succeed or not depends on the number of
available seats (at the time of booking) and cannot be predicted in advance.

− Unpredictable communication delays: Communication delays make it impossible
to record the states of all the involved providers instantaneously. For example, let
us assume that provider A initiates an attempt to record the state of the composi-
tion. Then, by the time the request (to record its state) reaches provider B and B re-
cords its state, provider A’s state might have changed.

− Dynamic configuration: The service providers are selected incrementally as the
execution progresses (dynamic binding). Thus, the “components” of the distributed
system may not be known in advance.

The services invoked by a composite service may themselves be composite, lead-
ing to a hierarchical composition. We refer to the service (provider) invoking another
service (provider) to execute part of its functionality as the parent and child services
(providers) respectively. The definitions of ancestor and descendent providers in a hi-
erarchical composition follow analogously. We are primarily interested in capturing
the state of a hierarchical Web services composition at any given point of time. The
problem of “capturing the state of a system” has been studied extensively in the area
of Distributed Systems and the solutions are usually categorized as snapshot algo-
rithms. We discuss in detail how some of the snapshot algorithms proposed in litera-
ture can be adapted to capture snapshots of hierarchical Web services compositions.
Snapshots usually reflect a state of the system which “might have occurred”. Snapshot
algorithms capable of capturing a state that “actually occurred” usually assume syn-
chronized clocks [M91], [L78], [M89] or real-time timestamps [B04]. Towards this
end, we show how we can acquire an actual state of the composition without the
above assumptions. Finally, we discuss the different types of execution related queries
and how we can answer them using the captured snapshots.

The rest of the paper is organized as follows: Section 2 introduces the underlying
state transition and composition model. Section 3 provides a detailed discussion about
the “state” of a hierarchical composition beginning with algorithms to capture the
state to how the captured information can be utilized. Section 4 concludes the work
and provides directions for future work.

100 D. Biswas and K. Vidyasankar

2 State Transition and Web Services Composition Model

We assume the existence of a coordinator and log manager corresponding to each
provider as shown in Fig. 1. The coordinator is responsible for all non-functional as-
pects related to the execution of the provider such as monitoring, transactions, etc.
The log manager logs information about any state transitions as well as any messages
sent/received by the provider. The state transitions and messages considered are as
outlined in Fig.2:

Fig. 1. Composition infrastructure

Fig. 2. Provider life cycle

− Not - Executing (NE): The provider is waiting for an invocation.
− Executing (E): On receiving an Invocation message (IM), the provider changes its

state from NE to E.
− Suspended (S) and Suspended by Invoker (IS): A provider, in state E, may change

its state to S due to an internal event (Suspend) or to IS on the receipt of a Suspend

 Monitoring for Hierarchical Web Services Compositions 101

message (SM). Conversely, the transition from S to E occurs due to an internal
event (Resume) and from IS to E on receiving a Resume message (RM).

− Canceling (CI), Canceling due to invoker (ICI) and Canceled (C): A provider, in
state E/S/IS, may change its state to CI due to an internal event (Cancel) or ICI on
the receipt of a Cancel message (CM). Once it finishes cancellation, it changes its
state to C and sends a Canceled message (CedM) to its parent. Please note that
cancellation may require canceling the effects of some of its children.

− Terminated (T) and Compensating (CP): The provider changes its state to T once it
has finished executing the operation. On termination, the provider sends a Termi-
nated message (TM) to its parent. A provider may be required to cancel an opera-
tion even after it has finished executing the operation (compensation). A provider,
in state T, changes its state to CP on receiving the CM. Once it finishes compensa-
tion, it moves to C and sends a CedM to its parent.

To keep the discussion simple, we assume that each provider is responsible for exe-
cuting a single operation (composite/primitive). The state of a provider at time t is its
execution history till t. For simplicity (and where there is no scope for confusion), we
represent the state of a provider at t in terms of the state of its executing operation at t
and, sometimes, also as a combination of the states of its executing and invoked opera-
tions at t. For example, if the execution history of a provider PA till t is “(Receive IM of
a1 from User, E1) (E11, Send IM of a11 to PB) (E12, Send IM of a12 to PC) (Receive TM of
a11 from PB, T11)” then the state of PA at t can be represented as E1 or E1 (T11, E12).

In a hierarchical composition, the lifecycles of a parent and child provider are not
independent. In fact, the discussion till now (Fig. 2) can be considered as the lifecycle
of a child provider with respect to its parent. Fig. 3 shows the lifecycle stages of a
parent with respect to one of its children. The same cycle would be repeated for other
children. We discuss the lifecycle stages with the help of an example scenario where a
composite provider P invokes an operation a11 of provider Q.

− Normal execution: Once P starts executing an operation (E), it is capable of invok-
ing operations of other providers. To invoke operation a11, P sends the correspond-
ing IM to Q.

− Suspension: Provider P may decide to suspend any of its invoked operations
(which are still executing). For example, if P is currently in state E1 (E11) and it de-
cides to suspend the operation a11 then it sends the corresponding SM to Q and
changes its state to E1 (IS11). Whenever P decides to resume operation a11, it sends
the corresponding RM to Q and changes its state back to E1 (E11).

− Cancellation: We allow for two types of cancellation. (1) Provider P decides to
cancel one of its invoked operations. For example, if P is currently in state E1 (E11)
or E1 (T11) and it decides to cancel the operation a11 then it sends the corresponding
CM to Q and changes its state to E1 (ICI11) or E1 (CP11) accordingly. Please note
that the same message CM is used for both cancellation and compensation. We do
not differentiate between the two because of synchronization problems between
parent-child providers. To illustrate the problem, let us assume that we have sepa-
rate messages for cancellation (CM) and compensation (say, CpM). Consider a
situation where the child has terminated (T) but its TM has not yet reached the par-
ent. Now, if the parent had to cancel the execution of the child, it would send a CM
to the child (since the state of the child is still E at the parent’s site). However, the

102 D. Biswas and K. Vidyasankar

child has already terminated and requires a CpM to cancel its effects. (2) Provider
P needs to cancel its execution (due to an internal event Cancel or on receiving the
CM from its parent), implying cancellation for all the operations invoked by P. For
example, if the current state of P is E1 (T11) and it receives a CM then it sends a
CM to Q and changes its state to ICI1 (CP11). Please note that the above state tran-
sition is not evident from Fig. 3.

− Termination: Provider P changes the state of a11 to T (C) on receiving the TM
(CedM) from Q. Needless to say, P can change the state of its operation a1 to T (C)
only after it has received the TM (CedM) from the providers of all the operations
invoked by P.

Fig. 3. Parent provider life cycle (with respect to one of its children)

We assume that the composition schema (static composition) specifies a partial or-
der for the operations invoked by a provider. We define the happened-before relation
between the operations invoked by a provider as follows:

An operation a happened-before operation b invoked by the same provider (a -->
b) if and only if one of the following holds: (1) There exists a control/data depend-
ency between operations a and b such that a needs to terminate before b can start exe-
cuting. (2) There exists an operation c invoked by the same provider such that a --> c
and c --> b.

An operation, on failure, is retried with the same or different providers till it com-
pletes successfully (terminates). Note that each (retrial) attempt is considered as a new
invocation and would be logged accordingly. Finally, to accommodate asynchronous
communication, we assume the presence of Input/Output (I/O) queues. Basically, each
provider has an I/O queue with respect to its parent and children as shown in Fig. 1. The
Input (Output) queue of a provider P corresponding to provider Q is referred to as IPQ
(OPQ). We assume that the status of the I/O queues and logs are updated in an atomic
manner. With respect to Fig. 2 and Fig. 3, for any message M whose send (receive)
causes the provider to change its state, the details of the state transition are written to the
log and M inserted into (deleted from) the Output (Input) queue in an atomic fashion.
For example, as soon as an operation terminates, the state of the operation in the log is
updated to T and the corresponding TM inserted into the Output queue atomically.

 Monitoring for Hierarchical Web Services Compositions 103

3 State of the Composition

3.1 Background

Research in the area of Web services monitoring [PBBST04], [LAP03] has focused
on monitoring as a mechanism for detecting and handling failures. [PBBST04] uses
monitoring to detect and signal if the invoked providers are behaving according to the
specified protocols. In [LAP03], the monitor is responsible for the entire execution
process starting from requesting the planner to come up with a plan for the user re-
quest to ensuring that the execution is proceeding as per plan (once execution starts).

The problem of “capturing the state of a system” has been studied extensively in
the area of Distributed Systems. A distributed system is usually modeled as a graph
whose vertices and edges represent the nodes and the bi-directional communication
channels connecting the nodes respectively. If we can freeze the computation at some
instant t, the snapshot would consist of the node states and the contents of the chan-
nels at t. The contents of a channel are the messages sent, but not yet received, by the
nodes on that channel. However, freezing the execution may not always be possible
(and even if possible should be avoided). Snapshot algorithms try to record the node
states and channel contents in such a way that they form a complete and consistent
state of the system. Consistency is usually defined by the condition “if the receive
event of a message has been recorded in the state of a node then the corresponding
send event should also have been recorded”.

3.2 Synchronized Clock Snapshot Algorithm

In this section, we discuss snapshot algorithms based on the assumption that the
clocks of the providers are synchronized. The absence of perfectly synchronized
clocks in a distributed setting has been studied extensively by researchers. Several
clock synchronization protocols have been proposed based on the notion of logical
[L78], [M89] and physical [M91] clocks. In [L78], Lamport presents an algorithm to
partially order the events across the system based on the assumption that the clocks
are monotonically increasing. An interesting property (or limitation) of Lamport’s al-
gorithm is: “If event a happened before event b then T(a) < T(b) (where T(a) and T(b)
are the timestamps associated with events a and b respectively). However, if T(x) <
T(y), it is not possible to determine if event x causally happened-before y or if they
are concurrent”. [M89] overcomes the above limitation by attaching vector time-
stamps to the events. Basically, it ensures that the timestamps of two concurrent
events are incomparable. Network Time Protocol (NTP) [M91] extends clock syn-
chronization for large networks connected over the internet. NTP provides skews in
the range of 1-30 ms, even for wide area networks. NTP is based on physically syn-
chronizing the clocks in a distributed system with an external clock such as a GPS
clock or other radio clocks. However, the above approaches require considerable co-
ordination among the participants (providers), which may not always be possible in a
Web services scenario due to the autonomy of the providers. A more loosely coupled
approach for clock synchronization is the use of a timestamp element as advocated by
WS standards like WS-Security [WSA] for SOAP messages. Basically, a timestamp
element consists of the creation time and transmission delays. Given this, we can cal-
culate the skew (drift) between the parent and child providers’ clocks as follows: skew

104 D. Biswas and K. Vidyasankar

= (receiver’s processing time - sender’s creation time - transmission delay). Although
the synchronization achieved with message timestamps may not be as accurate as
with NTP, we believe that it would still be acceptable for most Web services scenar-
ios given their long-lived nature.

Given synchronized clocks and logging (as discussed earlier), a snapshot of the hi-
erarchical composition at time t would consist of the logs of all the “relevant” provid-
ers till time t (hereafter, the log of a provider P till time t is referred to as logPt). The
relevant providers can be determined in a recursive manner (starting from the root
provider) by considering the providers of the invoked operations recorded in the par-
ent provider’s log till time t. If message timestamps are used then we need to consider
the skew while recording the logs, i.e., if a parent provider’s log was recorded till time
t then its children providers’ logs need to be recorded till (t + skew). The states of the
I/O queues can be determined from the state transition model. For example, if for a
pair of parent (P) - child (Q) providers, logPt denotes the state of an operation at as E
while logQt denotes its state as T/C then add the TM/CedM corresponding to at to IPQ.

3.3 Distributed Snapshot Algorithm for Web Services (DSW)

In this section, we do not assume synchronized clocks and outline an extension of the
Distributed Snapshots Algorithm (DSA) [CL85] to capture the state of a composition.
Before describing the extension, let us take a brief look at the original DSA. DSA re-
quires the channels to preserve the FIFO property. In addition to the messages belong-
ing to the underlying computation, the DSA assumes a special type of message called
markers. The markers do not have any effect on the underlying computation. The al-
gorithm can be initiated by one or more processes, each of which records its state,
without receiving markers from other processes. The DSA can be divided into two
phases: 1) the recording phase and 2) the collection phase. The recording mechanism
given by [CL85] is as follows:

Marker-Sending Rule for a Process p. For each channel c, incident on, and directed
away from p:

p sends one marker along c after p records its state and before p sends further mes-
sages along c.

Marker-Receiving Rule for a Process q. On receiving a marker along a channel c:
if q has not recorded its state then
 begin q records its state
 q records the state c as the empty sequence
 end
else q records the state of c as the sequence of messages received along c after q’s

state was recorded and before q received the marker along c.

Once the states have been recorded by all the nodes (the recording phase has ter-
minated), they need to be collected to get a snapshot of the system. The collection
phase is context dependant and [CL85] does not give any specific mechanisms to col-
lect the recorded states. For example, all the nodes may send their recorded states to a
previously agreed upon node or flood the recorded states through the system so that
each node can determine the snapshot of the system.

 Monitoring for Hierarchical Web Services Compositions 105

Distributed Snapshot algorithm for Web services (DSW):
Assumption: The I/O queues maintain the FIFO order of the messages.
The algorithm is initiated by the root provider, which atomically records its state

(as of the time of recording) and sends markers to its children providers. By recording
its state at time t, we mean that a provider records the contents of its local log at t, i.e.,
its execution history till t.

Child providers, on receiving the markers, do the same, i.e., atomically record their
states (as of the time of recording) and send markers to their children providers. This
downward propagation of the markers continues till leaf providers are reached.

The states of the I/O queues are computed as outlined for the synchronized clock
scenario.

The above algorithm (DSW) differs from the original DSA as follows:

− In DSA, markers are sent along all the outgoing channels. Basically, DSA assumes
that the network topology is static (fixed in advance). With Web services composi-
tions, due to dynamic binding, a provider at any point of time is only aware of the
providers of the operations it has invoked till then. A provider may invoke other
providers after it has recorded its state. Thus, the set of providers, whose states are
recorded, may vary from one snapshot to the next.

− Our algorithm does not require the providers to record the states of their I/O queues
explicitly. The contents of the I/O queues can be determined from the local states
of the providers as discussed earlier.

Correctness: As with the DSA, here also we show that the above algorithm captures a
state of the hierarchical composition which “might have occurred” (is consistent with
the state transitions discussed earlier). More precisely, we show that the recorded states
preserve the causality of the messages sent/received, i.e., if the reception of a message is
recorded then its transmission has also been recorded. Intuitively, the proof follows
from the fact that messages are exchanged only between parent-child providers and that
the state of a parent is always recorded before any of its children. Thus,

− for messages recorded as received by any parent: If the receive event is recorded,
then its corresponding send event (by the child) will also get recorded as the state
of the child is recorded later.

− for messages recorded as received by any child: The FIFO nature of the I/O queues
ensures that the parent sent the corresponding message before sending the marker.
And, since the recording of state and sending of markers is done in an atomic fash-
ion, the corresponding send event would have been recorded by the parent.

DSW captures the state of the hierarchical composition till the lowest level (leaf
providers). The algorithm can be customized as follows to record the state of the
composition up to a certain granularity:

− Capture the state up to level n: Append a counter with the marker. Each child pro-
vider, on receiving the marker, increments the counter by 1 and forwards it to its
children (if any) if the value of the counter <= n.

106 D. Biswas and K. Vidyasankar

− Capture the state till a certain condition holds: The condition may be time based
(for example, capture the states of as many providers as possible within a time
frame) or any predicate which can be evaluated locally. Similar to the above case,
we can accommodate this requirement by appending the predicate to the marker,
i.e., a provider forwards the received marker to only those children for which the
attached predicate evaluates to true.

Snapshot algorithms are primarily used to capture an intermediate state of the exe-
cution. As such there might be a need to run it multiple times for the same execution.
However, we cannot apply the idea of incremental snapshots [V89] directly here. A
provider cannot decide to forward the marker to only those children to (from) which it
has sent (received) messages after the last snapshot. Although the provider may not
have exchanged any messages with its children since the last snapshot, the state of the
lower level providers may have changed. Exceptions include scenarios where the
children providers have either terminated or canceled. While terminated lower level
child providers may be canceled (compensation), it would involve the send of a CM
(a provider cannot decide to compensate itself). Even without the idea of incremental
snapshots, it may not be required to traverse the entire hierarchy for each snapshot. A
provider P may proactively take snapshots of the subtree rooted at P. On receiving the
marker, P checks if the latest recorded snapshot (of the subtree rooted at P) is consis-
tent. If so, there is no need to forward the marker to P’s children. The snapshot is con-
sistent if and only if the recorded states of P and its parent are consistent with the ear-
lier state transition discussion. For example, if the state of an operation ai is recorded
as T at the parent provider’s site (P’s parent) then ai’s recorded state should be T at
the child provider’s (P’s) site too.

Fig. 4. Sample Snapshot showing “what might have occurred”

Fig. 5. Execution showing what “might have actually occurred”

 Monitoring for Hierarchical Web Services Compositions 107

3.4 Actual State of the Composition

As mentioned earlier, the snapshot acquired by the DSW highlights a global state of
the composition which “might have occurred”. For example, let us consider a single-
level composition. Now the algorithm might record the states of the providers in the
composition as shown in Fig. 4 namely, that operations a1, a11 and a12 are all execut-
ing. However, the execution might have happened as shown in Fig. 5 where operation
a11 had terminated before a12 started executing, i.e., operations a11 and a12 were never
executing simultaneously.

Let PS denote the set of providers whose states were recorded as part of a DSW
snapshot S. For a pair of parent-child providers in PS, if the state of the parent was re-
corded at time t then the child’s state would have been recorded at a later time (t + L).
Thus, the providers in PS may never have been in their recorded states simultaneously.
We can still infer the following about the states of the providers in PS at t based on the
state of a provider P in PS recorded at t.

− The presence of an operation at in the recorded state of P implies that all the opera-
tions having a happened-before relation with at have terminated by t (their states
are T at t).

− If the recorded state of P is E/S/IS/CI/ICI then its ancestors cannot be in the states
T/CP/C at t.

− If the recorded state of P is T(C) then all the providers in the sub-tree rooted at P
are in the state T (C) at t.

We use the above observations to acquire a state of the composition which “actu-
ally occurred”. We define an actual state of the composition as follows:

A global state represents the actual state of the composition at time t if it reflects
the states at t of all and only those providers invoked till t.

The concept of actual states is similar to the notion of Strongly Consistent Global
States (SCGS) [B04] in literature. While [B04] defines SCGS in terms of the local
states of all the providers in the system, we define the actual state at a time t in terms
of the local states of the providers invoked till t (due to dynamic binding). Algorithms
to detect SCGS in [B04] are based on real-time timestamps (similar to our algorithm
based on synchronized clocks).

Given a (DSW) snapshot S initiated at time t, we can acquire an actual state of the
composition at some point tp in the past (tp <= t) as given below:

Actual State Algorithm: /* Intuitively, we can simulate “freezing the execution” if we
can determine a time tp at which none of the providers invoked until that time are exe-
cuting, i.e., they are in the state T/C at tp. Thus, the algorithm tries to determine the
latest set of providers which have definitely been canceled or terminated till t. The al-
gorithm achieves this by determining the most recent time tp when all the children
providers at the root level are in the states T/C (implying all the lower level providers
invoked till tp are also in the states T/C). We illustrate the steps with the help of an
example scenario (Fig. 6 and 7). Fig. 6 depicts a sample DSW snapshot (only shows
the current states of the recorded operations), Fig. 7 shows the recorded state of the
root provider (contents of its log till t).*/

108 D. Biswas and K. Vidyasankar

Fig. 6. Sample DSW snapshot S

Fig. 7. Recorded state of the root provider

1. Let PIN denote the set of invoked providers in the recorded state of the root pro-
vider. If the state of each provider P in PIN is either C/T then terminate the algo-
rithm /* the recorded snapshot represents an actual state of the composition */.

2. From the recorded state of the root provider, determine the last provider Pl in PIN to
terminate/cancel before the invocation of the first provider Pf in PIN which is still
executing (in state E/IS/ICI) /* the “last” part (of the above statement) helps us in
acquiring the latest set while the “first” part ensures that the acquired set consists
only of terminated/canceled providers. PIN = {PB, PC, PD, PE, PF}, Pl = PE and Pf =
PF */. Given this, tp corresponds to the time just after Pl terminated/canceled.

/* The following steps determine the providers invoked (at all levels) till tp and
their states at tp. Recall that the recorded states of the providers reflect their states at a
later time t. As discussed earlier, the states of all the providers (invoked till tp) would
be C/T at tp. A small complication arises due to the possibility of compensation. A
provider which was in state T at tp may have been compensated before t (after tp) lead-
ing to its state being recorded as C. For example, the recorded state of the provider PE
is C (Fig. 6). However, from the log (Fig. 7) it is clear that the state of PE was T at tp.
As such, we may need to adjust the recorded states of some of the providers (invoked
till tp) so that they reflect their states at tp. */

3. Let SAP denote the set of invoked providers (at all levels) till tp. Initially, SAP =
Root provider.

 Monitoring for Hierarchical Web Services Compositions 109

4. Adjust the recorded state of the root provider so that it reflects its state at tp (con-
tents of its log till tp - Fig. 7). Use the newly adjusted state to determine the set of
providers PTP invoked by the root provider (its children) till tp and their states at tp.
Adjust the recoded states of providers in PTP accordingly (if required). Add the pro-
viders in PTP to SAP, i.e., SAP = SAP U PTP /* the adjusted recorded state of the root
provider denotes the state of PE as T, so adjust the recorded state of PE accordingly
(trim its log till tp - Fig. 8) */.

5. Repeat Step 4 recursively for each provider in PTP (determined at each stage) till
leaf providers are reached. /* SAP = {PA, PB, PC, PD, PE, PG, PH, PI, PJ, PK, PL, PM,
PN, PP, PQ, PR, PS, PT} */

The global state G, consisting of the states of the providers in SAP, represents the
actual state of the composition at time tp - Fig. 9.

Fig. 8. Recorded state of the provider PE

Fig. 9. Actual state corresponding to the snapshot in Fig. 6

It is easy to observe that the above mechanism can be used to acquire an actual
state for any sub-tree belonging to a snapshot acquired by the DSW. For example, if
we add another level of nesting to the composition in Fig. 6 (Fig. 10) then the above
mechanism can be used to acquire an actual state for the sub-tree rooted at PA.

3.5 Answering Execution Status Related Queries

Sometimes a diagram representing the state of the entire composition may contain
too much information to comprehend. As such, it should be possible to answer

110 D. Biswas and K. Vidyasankar

specific queries related to the state of execution. We discuss the capabilities and
limitations of the different snapshots (acquired using the algorithms mentioned ear-
lier) with respect to answering different types of queries. We divide the queries into
the following categories:

− Local queries: Queries which can be answered based on the local state information
of a provider. For example, queries such as “What is the current state of provider
P?” or “Has P reached a specific state?”. As obvious, we do not need a snapshot of
the composition to answer such queries. Local queries can be answered by directly
querying the concerned provider as long as it provides a query interface like Web
Services Distributed Management (WSDM) [WSDM].

Fig. 10. Acquiring actual states of sub-trees

− Status queries: Queries expressed over the states of several providers. We assume
that any query related to the status of a composition is expressed as a conjunction
of the states of individual providers. Examples of status queries: “Have providers
A, B and C reached states T, E and E respectively?”, “Have providers A, B, C and
D started executing?”, etc. Status queries can be answered using snapshots ac-
quired by any of the earlier given algorithms. Such queries have been referred to as
stable predicates in literature. Stable predicates are defined as predicates which do
not become false once they have become true. In our case, the stability of the query
is reflected by the fact that we do not have to capture the state of a provider as E to
conclude that it has started executing. We can infer the same even if the state of the
provider is recorded as T/CI/ICI/CP/C/IS/S.

− History queries: Queries related to the execution history of the composition. For
example, “How many times have providers A and B been suspended?”. Both syn-
chronized and actual state snapshots can be used to answer history related queries.
A DSW snapshot cannot be used directly because the recorded states of the provid-
ers reflect their states at different times. If the query is answered using a snapshot

 Monitoring for Hierarchical Web Services Compositions 111

acquired by the actual state algorithm then it needs to be mentioned that the statis-
tics are with respect to a time tp in the past.

− Relationship queries: Queries based on the relationship between states. For example,
“What was the state of provider A when provider B was in E?”, “Did provider A start
executing before provider B?”. Unfortunately, snapshot based mechanisms do not
guarantee answers for such queries. For example, we would not be able to answer the
first query unless we have a snapshot which captures the state of provider B when it
was in state E. B could have been in state NE when a snapshot was taken and in state
T when the next snapshot was taken. Such predicates have been referred to as unsta-
ble predicates in literature. Unstable predicates keep alternating their values between
true and false. While unstable predicates are in general very difficult to detect, re-
searchers have studied some special classes of unstable properties. (a) Strong unsta-
ble predicates [GW96] or predicates which will “definitely” hold [CM91]: A predi-
cate is called a strong predicate if and only if the global state over which it holds is
guaranteed to occur for any execution (irrespective of the execution speeds, commu-
nication delays and other variable parameters in a distributed setting). Intuitively,
strong unstable predicates allow us to verify that a desirable state will always occur.
(b) Strong unstable linked predicates [GW96], [MC88]: A linked predicate is ex-
pressed as a sequence of local predicates and is called a strong unstable linked predi-
cate if the corresponding local states occur in the same sequence for every execution.
Such predicates are useful in detecting the occurrence of a sequence of states in a dis-
tributed setting. We refer the reader to [SM92] for a survey of the unstable predicates
studied in literature. In a hierarchical composition scenario, these special classes of
unstable predicates help us in answering relationship queries as long as there exists a
parent-child (ancestor-descendent) relationship between the concerned providers. For
example, a global state where parent and child providers are executing simultane-
ously will definitely occur (strong) or an ancestor will always starting executing be-
fore any of its descendents (strong linked).

4 Conclusion and Future Work

Our objective in this paper is capturing the state of a hierarchical composition at a
given point of time. Towards that end, we provided algorithms: (1) based on the as-
sumption of synchronized clocks and (2) extension of the DSA (DSW). We outlined
how the DSW can be customized to record the state of a part of the composition and
optimized for taking successive snapshots. Then, we showed how we can acquire an
actual state of the hierarchical composition given a DSW snapshot. Finally, we dis-
cussed using the captured state information to answer execution status related queries.

In future, we would like to extend the monitoring algorithms to consider failure de-
tection including deadlocks, livelocks, etc. As discussed earlier, the DSW snapshot
represents a consistent (rather than actual) state of the hierarchical composition. We
are working towards a measure which would allow us to precisely quantify the differ-
ence between a DSW snapshot and an actual state, i.e., a measure of the accuracy of a
DSW snapshot. The aspects discussed in this paper assume a static composition and
dynamic binding environment. It would be interesting to try and apply the same to
fully dynamic compositions.

112 D. Biswas and K. Vidyasankar

Acknowledgements

We would like to thank the anonymous referees for their valuable comments which
helped to improve the work in this paper considerably.

References

[B04] Janusz Borkowski. Hierarchical Detection of Strongly Consistent Global States.
In Proceedings of the 3rd International Symposium on Parallel and Distributed
Computing, 2004, pp: 256-261.

[CL85] K. M. Chandy and L. Lamport. Distributed Snapshots: Determining Global States
of Distributed Systems. ACM Transactions on Computer Systems, 3(1):63-75,
February 1985.

[CM91] R. Cooper and K. Marzullo. Consistent detection of global predicates. In Pro-
ceedings of the ACM/ONR Workshop on Parallel Distributed Debugging 1991,
pp: 163-173.

[GW96] V.K. Garg and B.Waldecker. Detection of Strong Unstable Predicates in Distrib-
uted Programs. IEEE Trans. Parallel and Distributed Systems, Dec. 1996, pp:
1323-1333.

[L78] L. Lamport. Time, Clocks and Ordering of Events in Distributed Systems.
Comm. ACM, vol. 21, no. 7, pp: 558-565, July 1978.

[LAP03] A. Lazovik, M. Aiello and M. Papazoglou. Planning and Monitoring the Execu-
tion of Web Service Requests. In Proceedings of the 1st International Conference
on Service-Oriented Computing (ICSOC'03), 2003, LNCS 2910, pp: 335-350.

[M89] F. Mattern. Virtual time and global states of distributed systems. In Parallel and
Distributed Algorithms, Elsevier Science Publishers B.V. (North-Holland), 1989,
pp: 215-226.

[M91] D. L. Mills. Internet time synchronization: the Network Time Protocol. IEEE
Trans. Communications 39, 10 (October 1991), pp: 1482-1493.

[MC88] B.P. Miller and J.D. Choi. Breakpoints and Halting in Distributed Programs. In
Proceedings of the 8th International Conference on Distributed Computing Sys-
tems, 1988, CS Press, pp: 316-323.

[PBBST04] M. Pistore, P. Bertoli, F. Barbon, D. Shaparau and P. Traverso. Planning and
Monitoring Web Service Composition. In Proceedings of the Workshop on Plan-
ning and Scheduling for Web and Grid Services, 2004.

[SM92] R. Schwartz and F. Mattem. Detecting causal relationships in distributed compu-
tations: In search of the holy grail. Tech. Rep. SFB124- 15/92, Univ. of Kaiser-
slautern, Germany, 1992.

[V89] S. Venkatesan. Message-optimal incremental snapshots. In Proceedings of the 9th
International Conference on Distributed Computing Systems, 1989, pp: 53-60.

[WSA] WS Security Addendum. http://msdn.microsoft.com/library/en-us/dnglobspec/
html/ws-security-addendum.asp.

[WSDM] Specification: Web Services Distributed Management (WSDM). http://
devresource.hp. com/drc/specifications/wsdm/index.jsp.

C. Bussler and M.-C. Shan (Eds.): TES 2005, LNCS 3811, pp. 113 – 125, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Efficient Scheduling Strategies for Web Services-Based
E-Business Transactions

Erdogan Dogdu1 and Venkata Mamidenna2

1 TOBB Economics and Technology University,
Computer Engineering Department, Ankara, Turkey

edogdu@etu.edu.tr
http://www.etu.edu.tr/~edogdu

2 Georgia State University, Computer Science Department,
Atlanta, Georgia, USA

maswaroop@yahoo.com

Abstract. Web services platform, strongly backed by the information technology
industry, is destined to change the software application integration, application in-
teroperability, and distributed computing in radical ways. Web services platform
is based on open data communication and data formatting protocols; therefore it
has a very promising future in terms of adoptability. Future distributed appli-
cations in general and e-business applications in particular will be built rapidly
by reusing web services components that are made available on Internet. These
applications will talk to each other and utilize each other’s functionality. This
is in general called Service-Oriented Computing. For the service-oriented ap-
plications Quality of Service (QoS) will be a major concern considering the
dependency over remote applications and Internet communication. In this pa-
per we consider a service-oriented computing (e.g., e-business) environment
where “similar” services are provided by many providers. Therefore, service
clients can choose any of these service providers during run-time. Transactions
(client programs that request services from multiple providers) are processed
via “web services monitors” that handle service composition execution. Trans-
action monitor in this case need to efficiently schedule service requests to the
best service provider in order to optimize the system throughput. We present
some basic strategies for efficient scheduling of web services transactions. We
show through a simulation-based evaluation that even basic strategies improve
the system throughput substantially.

1 Introduction

Future software applications will be more web-enabled utilizing ubiquitous Internet
protocols. Applications will be developed by reusing web-based components where
remote applications will provide functionality over Web Services-based messaging
protocols. Web Services-based interoperability will be the key communication infra-
structure for building open, component-based, integrated web applications. Web Ser-
vices enable heterogeneous software applications to communicate via XML-based
messages. Applications in this framework can find web services providers, can be

114 E. Dogdu and V. Mamidenna

integrated with the web services automatically, and use their services at runtime in-
stantly, therefore providing interoperability. E-business and e-commerce applications
in particular will be the showcase areas benefiting from this infrastructure.

There is also a concern in the area of transmitting and processing XML messages.
XML files are larger in size compared to binary-coded and untagged data. Therefore,
the transmission of large XML-tagged data over the network is slower than transmit-
ting data with other formats. For the service-oriented applications Quality of Service
(QoS) will be a major concern considering the dependency over remote applications
and Internet communication [15]. Disconnections or unpredictable remote service
availability will result in fluctuating performance behavior for web services-based
applications. In addition to these, remotely used web services will be overloaded with
many requests in some cases; this is similar to the web sites were overloaded in the
early days of Internet and more scalable solutions are developed later on [1]. This will
cause delays in getting services and therefore will cost the web services-dependent
applications to suffer from slow response times.

Above mentioned performance concerns will be especially important for e-
business and e-commerce applications due to the business nature of the applications.
Some of these services are expected to be pay-per-use services, thus having monetary
and profit-oriented end results.

Therefore, remote web services should be scalable and robust, handling overload
conditions and responding to failures efficiently (transactional). Performance is there-
fore a major issue for WS-based applications or compositions (transactions).

Current web services-based application composition techniques only concentrate
on (1) languages to compose WS invocations, (2) tools to generate composition
scripts, and (3) engines to interpret and execute WS transactions. Next issue in this
area will be developing scalable, robust, reliable, and performance-oriented execution
of web services compositions or transactions. In this paper, we address the issue of
QoS for web services transactions. We propose a two-step scheduling technique for
dynamic execution of web services transactions. Specifically, we propose a new
model for the composition and execution of web services-based transactions. In this
model, we envision that future web services will provide “similar” services; therefore
the clients of these services will be able to pick and choose from a selection list of
services at runtime. In our proposal, a Web Services Monitor (WSM) handles the
execution of web services transactions. WSM automatically searches service directo-
ries, finds, and executes a web service upon a request during runtime. WSM employs
some basic scheduling schemes for the selection of web service providers when exe-
cuting web service requests of transactions. We experimentally evaluate our WSM
proposal and the service scheduling schemes via simulation and present some pre-
liminary results at the end.

2 Web Services Monitor

We propose a new framework for efficient execution of web services compositions. In
this framework, Web Services Monitors play an important role. A Web Services Moni-
tor (WSM) is an execution engine for web services compositions and transactions [2].

 Efficient Scheduling Strategies for Web Services-Based E-Business Transactions 115

WS transactions are submitted to a WSM and the WSM executes the transaction by
interpreting the script that defines the process, for example an e-commerce transaction.

Many web services composition schemes and languages have been developed in
recent years. Among those Business Process Execution Language for Web Services
(BPEL4WS) specification, proposed by IBM, BEA, Microsoft and other industry
leaders, is likely to become an industry standard [3]. A future implementation of our
WSM will employ BPEL as the scripting language for web services transactions.

WSM in our proposal is not only a simple execution engine as seen in other com-
position execution engines such as BPWS4J from IBM, BPEL Server from Collaxa,
and BEA’s WebLogic Workshop. WSM is an intelligent execution engine with Qual-
ity of Service (QoS) considerations. QoS features include service selection, schedul-
ing, preemption, load balancing, timely execution of transactions, etc.

In the early days of the Web, web servers became overloaded as the web usage in-
creased dramatically. This resulted in scalable, distributed web server architectures
[1]. We will see a similar trend for web services in the near future, as web services
becoming the common integration solution for distributed, component- and service-
oriented application development on the web. Future web services need to be more
scalable, intelligently handling and rerouting web service requests during runtime.
Our WSM is a step towards this direction.

WSM assumes that multiple service providers with the same or similar interfaces
provide the same services of interest. For example, the following two web services
provide stock quote service:

- http://www.xignite.com/xrealtime.asmx (GetRealQuote operation)
- http://66.28.98.121:9090/soap (getQuote operation)

First service has a method called “GetRealQuote” and the second service has a
method called “getQuote”. Both methods return the stock value for a given stock
symbol. Therefore, a web service transaction that needs to find stock quote values can
invoke any one of these two services.

Current web service composition languages incorporate “static” service selection
features. This means services are selected during compile time and once services are
determined, they cannot be changed until the transaction script is changed (another
composition). For example in BPEL4WS, the BPEL script lists outside web services
that will be used by the executable process (orchestration). Figure 1 shows an incom-
plete BPEL script depicting a travel reservation scenario [4].

In this example, the web service composition is utilizing two remote web services
DeltaAirlines and MarriottHotels. It is a static composition of the specified two ser-
vices. This travel reservation script makes reservations only from Delta Airlines and
from Marriott Hotels but nowhere else.

In the future, a web services composition is supposed to specify the “type” of ser-
vices needed in the composition, not some specific services. This way the composition
will be more flexible and more robust, handling future changes in service providers (due
to price, availability, service quality, etc.) much better than a static composition. Of
course, this will not be the case for all service compositions; some compositions may
still be needed to put together with static calls, for example due to contacts with certain
service providers. But, a “dynamic” service selection and integration in runtime will be
a needed feature for many service compositions.

116 E. Dogdu and V. Mamidenna

<process name="TravelService"
 targetNamespace="http://tobb.com/bpel/travel/"
 xmlns=”http://schemas.xmlsoap.org/ws/2003/03/
 business-process/”
 xmlns:bpws=”http://schemas.xmlsoap.org/ws/2003/03/
 business-process/”
 xmlns:trv=”http://tobb.com/bpel/travel/"
 xmlns:htl=”http://tobb.com/service/hotel/”
 xmlns:aln="http://tobb.com/service/airline/" >

 <partnerLinks>
 ...
 <partnerLink name="DeltaAirlines"
 partnerLinkType="aln:flightLT"
 myRole="airlineCustomer"
 partnerRole="airlineService"/>
 <partnerLink name="MarriottHotels"
 partnerLinkType="htl:hotelLT"
 myRole="hotelairlineCustomer"
 partnerRole="hotelService"/>
 ...
 </partnerLinks>
 <variables>
 ...
 <variable name="FlightDetails"
 messageType="aln:FlightTicketRequestMessage"/>
 <variable name="HotelStayDetails"
 messageType="htl:HotelStayRequestMessage"/>
 ...
 </variables>
 <sequence>
 <flow>
 ...
 <sequence>
 <invoke partnerLink="DeltaAirlines"
 portType="aln:FlightAvailabilityPT"
 operation="FlightAvailability"
 inputVariable="FlightDetails" />
 ...
 </sequence>
 <sequence>
 <invoke partnerLink="MarriottHotels"
 portType="htl:HotelAvailabilityPT"
 operation="HotelAvailability"
 inputVariable="HotelStayDetails" />
 ...
 </sequence>
 </flow>
 </sequence>
</process>

Fig. 1. BPEL script of an executable process showing a travel web service

WSM we propose incorporates such a feature. While interpreting the trans-
action script, WSM also selects appropriate service providers among a number of
similar service providers for execution. Figure 2 depicts such a scenario for a web service

 Efficient Scheduling Strategies for Web Services-Based E-Business Transactions 117

<!-- Transaction 1 -->
<sequence>
 <invoke …
 operation=“A” …/>
 <flow>
 <sequence>
 <invoke …
 operation=“B” />
 <sequence>
 <invoke …
 operation=“C” />
 </flow>
</sequence>

Fig. 2. A web services transaction and the invocation of web services requests by WSM

Fig. 3. Scheduling web services transactions via web services monitors

transaction consisting of 3 web service method invocations (A, B, and C). A number
of web services are assumed to provide similar methods for each method type (A, B,
C). During execution, WSM selects one of the available services for executing
method A, then for method B and method C.

Figure 3 illustrates how a WSM works. WSM includes the following modules:

Service Directory: Service Directory is a central registry of service providers. Ser-
vices are listed in this registry by their methods and their interfaces. Services are reg-
istered in the Service Directory as they become available. This can be done by an
expert user or by the service developers who have appropriate privileges for register-
ing services. Methods in each service are picked and grouped by their similarity and a
search function is provided for clients. For example, the stock quote methods listed in
the previous section are listed as two entries, one service point for each. A transaction
(or client) interested in running one of the two methods can find the other using the
service directory search function.

Transaction Queue: Many clients can send transactions concurrently to a WSM for
execution. Therefore, transactions that are submitted to a WSM are first entered into

118 E. Dogdu and V. Mamidenna

the transaction queue for better scheduling, resource management and utilization
reasons. Different WSMs can use different queuing mechanisms such as first-in-first-
out, or priority queues such as real-time deadline or slack time-based queues. Sched-
uler in the WSM picks transactions from the queue for execution in the order they are
supposed to be executed as resources (e.g., CPU, disk, etc.) become available.

Scheduler: Scheduler is an important module in WSM. It retrieves transactions from
the transaction queue and executes them. During execution, as service method invoca-
tions are requested, scheduler looks up in the service directory for similar services
providing similar methods. Then, the scheduler picks an appropriate service provider
for the requested method invocation based on a number of criteria (see following
sections). Scheduler uses “service log” for service selection using previous executions
outcomes such as response times, etc. Upon selection of the service provider, method
invocation is submitted in the form of a SOAP message by the execution engine in
cooperation with the scheduler. While doing this, scheduler does not pick a different
service provider in each new invocation within the same process. Once a service pro-
vider is selected, subsequent service invocations are directed to the same provider.

Execution Engine: This module is responsible for executing transactions and re-
questing method invocations from selected web services. It also talks to the log man-
ager for recording appropriate outcomes that will be used by future web service trans-
action executions.

Log Manager: Log manager records the transaction outcomes in the central service
log. These outcomes include the following and more: average response time and
variation of response time for a specific method invocation (based on the number of
previous executions of the same method).

In the framework we propose web services transactions are executed as follows:

Step 1. Register services and their methods in the service directory as they become
available.

Transactions are submitted to a WSM. Transaction is first queued in the transaction
queue of the WSM. Later scheduler picks transactions from queue based on transac-
tion order and resource availability.

Step 2. Scheduler executes the transaction in cooperation with the execution en-
gine. Scheduler “searches” the service directory and finds service providers that pro-
vide similar services that are requested by the transaction.

Step 3. Before invocation of a web service method, scheduler “selects” a service
among a number of available ones that are found in step 2. For this, scheduler con-
sults with “service log”, and using a number of criteria implemented in the scheduler,
selects an appropriate service provider.

Step 4. Execution engine, upon a request from scheduler, invokes the remote
method in the selected service provider.

Step 5. The log manager upon a request from execution engine records service in-
vocation outcomes, such as response time, in the service log. This happens after the
response is taken from service provider.

 Efficient Scheduling Strategies for Web Services-Based E-Business Transactions 119

3 Scheduling of Web Services Requests

Scheduling jobs among a number of parallel machines is a well-known problem. Most
scheduling problems consider offline scheduling of a number of submitted jobs. Most
of the scheduling problems are NP-Hard [5].

Web services are independently developed and managed entities. Therefore, they
cannot be strictly controlled and services cannot be utilized in a controlled manner.
Web service invocations will happen randomly at will whenever transactions are
submitted to WSM and executed concurrently. Thus, scheduling web service transac-
tions cannot be done offline. Web service transaction execution is an online schedul-
ing problem.

Graham studied the online job-scheduling problem. He developed a simple and
elegant solution for near-optimal scheduling of online jobs [6]. In Graham’s online
scheduling problem a number of jobs are to be scheduled on m identical parallel ma-
chines. The goal is to minimize the makespan of these jobs (completion time of the
last job). The processing time of each job is known in advance. Graham’s algorithm
simply schedules the next job in line on the machine with the smallest load. There are
variations of this algorithm adapted for different load characteristics [18].

We adapt a similar solution for our web services monitor. We propose some basic
schemes for service provider selection and these are presented in the following section.
A more comprehensive discussion of scheduling problems in our proposal is presented
in [13]. There we discussed a very general framework where service executions are
handled by many monitors (service composition execution engines) and compositions
are first scheduled to an appropriate engine, and the engine dynamically schedules ser-
vice request consequently (therefore called, two-step scheduling mechanism).

4 WSM Simulation

Since we are interested in the performance of scheduling strategies of WSM, we im-
plemented a simulator to observe the performance of scheduling algorithms we pro-
pose. Our simulator is implemented using SimJava, which is a popular open-source
discrete-event simulation development kit [12]. SimJava consists of a collection of
Java libraries for building customized discrete-event simulators.

Our WSM simulator simulates the behavior of a single WSM. Therefore, only the
second step of the two-step scheduling scheme we presented in the previous section is
implemented. But, considering that both steps are dealing with the “load balancing”
issue, similar techniques will apply to solve the optimization problem in each step.
Anyhow, we will later include the first step scheduling in our solution, first in the
simulator and then in a prototype implementation in future. Here, load balancing
refers to the issue from a client’s point of view. By distributing the web service calls
among a number of servers evenly (by considering the server loads) will shorten the
response times for clients’ processes (compositions). On the other hand, servers will
also benefit from this by getting a balanced load (server side improvement on process-
ing times).

120 E. Dogdu and V. Mamidenna

4.1 Scheduling Techniques Implemented

Our WSM simulator implements the following basic scheduling schemes, some of
which we briefly discussed in previous sections:

a) No Directory: This is the base scheme that has no specific scheduling strat-
egy. It will be used to compare against the other scheduling strategies. In this
“No Dictionary” technique, we do not utilize web service provider similarities.
Therefore, the web service directory in our system is not used at all. Each web
service is considered as a unique service and therefore service requests in a
transaction are directed to the specified web service provider.

b) Round-Robin Scheduling: In this scheme, similar web services are grouped
and ordered in a list. Web service directory in figure 3 helps in this algorithm.
Each entry in the directory consists of a number of similar services and their
providers. These services are then ordered. During run-time, when there is a
request for a web service, algorithm checks the entry in the directory for the
requested service. Directory keeps a sliding pointer on each list of similar ser-
vices (directory entries) and gives out the next service in line when requested
and the slides the pointer to the next service in the list. This is basically the
well-known “round-robin” scheduling technique from operating systems.

c) Load Balancing: We refine the previous round-robin scheduling technique
with a load-balancing technique. We assume that in future web services will
be very common and overload conditions on service providers will be likely
(like it is the case with web servers time to time). Therefore, a load balancing
technique will help to improve the overall server utilization and system
throughput in cases where the system overload is very high (many transactions
flooding service providers). We choose a simple method here. We use the
same data structures as in the round-robin scheduling technique above. We add
one more data: for each web services provider in a list, we also save the num-
ber of transactions being served by that provider. When the next service re-
quest comes, the service directory provides the server that is currently serving
the least number of transactions among similar providers. This will basically
distribute the hits among similar service providers, therefore improving the re-
sponse times and therefore the transaction completion times.

4.2 Simulator Design

Figure 4 depicts the modular design of our system. System consists of the following
modules:

Transaction Generator: This module generates a new transaction at certain inter-
vals. The delay between contiguous transaction arrivals (generations) is exponentially
distributed to model a near real environment.

Engine: Engine executes a transaction. A transaction consists of local processing
operations and web services calls (mixed and sequential). Local processing involves
CPU processing for computation and Disk access for read/write operations. Web
service calls in the transaction are requests from web service providers. These calls

 Efficient Scheduling Strategies for Web Services-Based E-Business Transactions 121

Fig. 4. Simulation system modules

Table 1. Simulation System Parameters

Parameter Explanation Test Run Values
NumberOfTx Number of Transactions 200
MaxOpsTx Maximum number of operations per tx 20
MinOpsTx Minimum number of operations per tx 10
RateWSPerTx Percentage of WS calls per tx 50%
RateCPUPerTx Percentage of CPU operations per tx 20%
RateDiskPerTx Percentage of Disk operations per tx 30%
ExecTimeWS Average WS call execution time (ms) 30 ms (mean)

5 ms (variance)
ExecTimeCPU Average CPU op. execution time (ms) 10 ms (mean)

2 ms (variance)
ExecTimeDisk Average Disk op. execution time (ms) 15 ms (mean)

3 ms (variance)
TxArrivalRate Intertransaction arrival rate (ms) 10-300ms
NumberOfWS Number of Web Service Providers 50
NumberOfWSTypes Number of Web Service Provider Types 15

require the transaction to wait for the web service response to come back before con-
tinuing. When a web service call is met Engine sends the request to one of the service
providers according to one of the scheduling schemes. Engine implements the three
basic scheduling schemes explained above, namely No-Dictionary, Round-Robin, and
Load-Balancing. During experimental runs, a specific experiment can set the schedul-
ing scheme to one of these.

Web Service Providers: These are the service providers independent of WSM. WSM
Engine can use these when transactions request a service. They are grouped into simi-
lar service providers (service type). They imitate the behavior of executing a web
service call by delaying for a specified number of milliseconds.

For the generation and execution of WS transactions, our simulator uses the pa-
rameters listed in Table 1. Parameters in the table are listed in a configuration table

122 E. Dogdu and V. Mamidenna

and the simulation system read those parameters to perform a test. System generates
NumberOfTx transactions per experimental run. For each transaction, system gener-
ates between MinOpsTx and MaxOpsTx operations which is a uniformly distributed
random number. RateWSPerTx percentage of operations are WS calls, the rest of the
operations are CPU (RateCPUPerTx) and Disk (RateDiskPerTx) operations (local
processing operations). WS calls take in average ExecTimeWS ms to execute, CPU
operations take in average ExecTimeCPU ms, and Disk operations take in average
ExecTimeDisk ms. These are normally distributed random variables. The delay be-
tween two consecutive transaction generations is exponentially distributed with the
mean TxArrivalRate. There are a fixed number of WS providers (NumberOfWS) and a
fixed number of WS types (NumberOfWSTypes) these WS providers belong to.

5 Experimental Results

Third column in Table 1 lists the values we used in the experiments for the configura-
tion parameters. Figure 5 lists some early results. According to the results presented in
Figure 5, both RR and LB perform much better than ND scheme. That is, both
schemes lower the average execution time of transactions in the system. Simply,
higher throughput is obtained in the system. Therefore, we conclude that even basic
service selection algorithms will result in better system throughput, i.e. higher number
of transaction executions and completions, better utilization of system resources and
service providers.

In between the two basic schemes, RR and LB, we obtained that LB performs
slightly better than RR. This is expected, but the difference is not too much as one
might expect. This is due to the selection of system parameter values. In a system
overload condition, this difference is expected to be larger since load balancing han-
dles overload conditions better by distributing the load between servers.

Interarrival Time Vs Tx Exec Time

0

1000

2000

3000

4000

5000

6000

7000

8000

1 10 50 80 150 250 350 425 450 500

Mean Tx interarrival time(ms)

A
vg

 T
x

E
xe

c
T

im
e(

m
s)

ND

RR

LB

Fig. 5. Experimental results, comparing the average transaction (tx) execution time for 3 differ-
ent scheduling schemes (ND: no-dictionary, RR: round-robin, LB: load-balancing)

 Efficient Scheduling Strategies for Web Services-Based E-Business Transactions 123

6 Related Works

“Web services” is a new technology that is offering a new XML-based middleware
for Internet-oriented application integration and distributed application development
over heterogeneous devices and platforms [8][10]. Future use of web services in real
e-business world requires transactional specification and execution mechanisms.
Many works in this area are reported. Developing standards for web services compo-
sition and transactional execution is one of the interesting topics getting a lot of atten-
tion from both academia and industry [3][8][9].

Scheduling web services transactions is a new research area. There are not many
work reported in the literature. SELF-SERVE is a related work in this area [7]. SELF-
SERVE is a web services composition and scheduling tool. Its scheduling component
mainly concentrates on optimal service selection for individual and isolated composi-
tions. It also assumes that a-priori execution time of web service invocations is known
in advance along with the cost of web service invocations [7]. In our work, we con-
sider multiple compositions and their assignment to web services monitors and then
assignment of individual web service invocations to web services providers (among a
number of providers of similar services).

METEOR-S is another system developed at University of Georgia with a similar
dynamic service binding concept [14]. METEOR-S provides static, deployment-time,
and run-time service binding based on constraints associated with web processes.
Their experiments show that run-time binding is very costly; response times are 7
times more than deployment-time binding, and almost 20 times more than static bind-
ing. This is mainly due to the service discovery process. Our system differs from
METEOR-S; our discovery process is much more robust than METEOR-S because
we do offline evaluation of service providers and similar services are listed in a direc-
tory for run-time evaluation prior to execution. Therefore, there is no cost associated
with the service discovery in our framework during runtime execution. We do not
exercise a general purpose service discovery scheme, like the one used in METEOR-S
or as it is envisioned in “semantic web services” research [16][17]. Instead, services
are presorted and listed service directories with “type” information, and therefore the
scheduler is bound to choose from a given list in our framework. We believe there
will be place for both cases in a future e-business world: in some scenarios, contracts
will be sought, and therefore similar services will be picked and listed in service di-
rectories (as in our case) and in some other scenarios, service composition will be free
to pick and choose from anywhere within specified constraints (there might even be
automatic negotiations).

7 Conclusions

In this paper we presented a new web services composition model where web services
compositions utilize similar web services offerings during runtime via an execution
engine. In this model, web services compositions are not strictly put together out of
fixed web services (static model) but the composition specifies a flexible execution
model (dynamic model). When submitted to a web service transaction execution

124 E. Dogdu and V. Mamidenna

engine (WSM), the engine chooses which web service to use during runtime. Therefore
our model presents a better solution for performance-oriented use of web services.

Here, we are faced with a scheduling challenge in this model: WSM should make
an intelligent choice among a number of similar web services to increase the system
throughput. A simulation system developed and some of the basic scheduling
schemes we developed for service selection are tested. Results show better system
throughput even with these basic algorithms.

As a continuation of this work we will build a real Web Services Monitor that can
be used to schedule web services transactions. This engine will be based on
BPEL4WS specification, the latest language proposal for web services composition.

One more problem we did not address in this paper is how the service similarities
will be determined. Even if two service providers provide similar services, there could
be differences in service “signatures”, such as service method names, input/output
parameter types, counts, and ordering, etc. This is a “service matching” problem.
“Semantic web services” research area tries to address this issue by attaching meaning
to services using ontologies and how services could be picked, matched, and used
dynamically [16][17]. This problem certainly needs to be addressed in a meaningful
“automatic service selection and execution” framework. Our future work will also
investigate this issue.

References

1. Aversa, L., Bestavros, A., “Load Balancing a Cluster of Web Servers Using Distributed
Packet Rewriting”, Proc. of IEEE Int. Performance, Computing, and Comm. Conf., 2000.

2. Dogdu, E., “An Extended Web Services Framework”, Proc. of the IASTED Int. Conf. on
Communications, Internet and Information Technology, 2002.

3. BPEL4WS - Specification: Business Process Execution Language for Web Services Ver-
sion 1.1. See: http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/.

4. Sample BPEL scripts, see: http://www.sys-con.com/webservices/sourcec.cfm.
5. Carrey, M.R., Johnson D.S., Computers and Intractability: A Guide to the Theory of NP-

Completeness. W.H. Freeman, 1979.
6. Graham, R.L., “Bounds for certain multi-processing anomalies”. Bell System Tech. Jour-

nal, 45:1563-1581, 1966.
7. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q. Z., “Quality Driven WS

Composition”, Proc. Of the World Wide Web Conference, 2003.
8. Peltz, C., “Web Services Orchestration and Choreography”, IEEE Computer, Oct 2003.
9. Little, M., “Transactions and Web Services”, Communication of the ACM, Oct 2003.

10. Dogdu, E., Sunderraman, R., “A Web Services Testing Tool”, Proc. of the 7th IASTED
Int. Conf. on Internet and Multimedia Systems and Applications, Aug 13-15, 2003.

11. Mamidenna, V., “Efficient Scheduling Strategies for Web Service Transactions”, M.S.
Thesis, Georgia State University, 2004.

12. SimJava, see: http://www.dcs.ed.ac.uk/home/hase/simjava/
13. Dogdu, E., “Scheduling Web Services Transactions”, Proc. of the 2004 International Sym-

posium on Web Services and Applications (ISWS'04), 2004, Las Vegas, Nevada, USA.
14. Verma, K., Gomadam, K., Sheth, A. P., Miller, J. A., Wu, Z., “The METEOR-S Approach

for Configuring and Executing Dynamic Web Processes”, Large Scale Distributed Infor-
mation Systems Lab. University of Georgia. Technical Report 05-001, 2005.

 Efficient Scheduling Strategies for Web Services-Based E-Business Transactions 125

15. Menasce, D.A., “Quality of Service Issues in Web Services”, IEEE Internet Computing,
6(6), 72-75, 2002.

16. Semantic web-enabled web services. http://swws.semanticweb.org
17. Semantic web services. http://www.daml.org/services
18. Susanne Albers, Bianca Schröder, “An Experimental Study of Online Scheduling Algo-

rithms”, Journal of Experimental Algorithms, 7(3), 1-14, 2002.

Author Index

Baresi, Luciano 72
Benharkat, Nabila 34
Biswas, Debmalya 98

Casati, Fabio 1
Castellanos, Malu 1
Chukmol, Uddam 34

Dayal, Umeshwar 1
Doan, AnHai 11
Dogdu, Erdogan 113
Dustdar, Schahram 23, 48
Du, Zongxia 58

Guinea, Sam 72

Huai, Jinpeng 58

Jaeger, Michael C. 84

Liu, Yunhao 58

Mamidenna, Venkata 113
Meng, Weiyi 11

Oberleitner, Johann 48

Plebani, Pierluigi 72

Rifaieh, Rami 34
Rojec-Goldmann, Gregor 84
Rosenberg, Florian 48

Sayal, Mehmet 1
Schmit, Benjamin A. 23

Vidyasankar, Krishnamurthy 98

Wu, Wensheng 11

Yu, Clement 11

	Frontmatter
	Keynote Presentation
	Challenges in Business Process Analysis and Optimization

	Design
	Bootstrapping Domain Ontology for Semantic Web Services from Source Web Sites
	Systematic Design of Web Service Transactions
	A Matching Algorithm for Electronic Data Interchange

	Technology
	A Lightweight Model-Driven Orchestration Engine for e-Services
	Ad-UDDI: An Active and Distributed Service Registry
	WS-Policy for Service Monitoring

	Composite Web Services
	SENECA -- Simulation of Algorithms for the Selection of Web Services for Compositions
	Monitoring for Hierarchical Web Services Compositions
	Efficient Scheduling Strategies for Web Services-Based E-Business Transactions

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

